Towards Generic Scalable Parallel Combinatorial Search

Blair Archibald
University of Glasgow
b.archibald.1@research.gla.ac.uk

Phil Trinder

University of Glasgow
Phil. Trinder@glasgow.ac.uk

ABSTRACT

Combinatorial search problems in mathematics, e.g. in finite geom-
etry, are notoriously hard; a state-of-the-art backtracking search
algorithm can easily take months to solve a single problem. There is
clearly demand for parallel combinatorial search algorithms scaling
to hundreds of cores and beyond. However, backtracking combina-
torial searches are challenging to parallelise due to their sensitivity
to search order and due to the their irregularly shaped search trees.
Moreover, scaling parallel search to hundreds of cores generally
requires highly specialist parallel programming expertise.

This paper proposes a generic scalable framework for solving
hard combinatorial problems. Key elements are distributed memory
task parallelism (to achieve scale), work stealing (to cope with irreg-
ularity), and generic algorithmic skeletons for combinatorial search
(to reduce the parallelism expertise required). We outline two im-
plementations: a mature Haskell Tree Search Library (HTSL) based
around algorithmic skeletons and a prototype C++ Tree Search
Library (CTSL) that uses hand coded applications.

Experiments on maximum clique problems and on a problem
in finite geometry, the search for spreads in H(4, 2%), show that (1)
CTSL consistently outperforms HTSL on sequential runs, and (2)
both libraries scale to 200 cores, e.g. speeding up spreads search
by a factor of 81 (HTSL) and 60 (CTSL), respectively. This demon-
strates the potential of our generic framework for scaling parallel
combinatorial search to large distributed memory platforms.

KEYWORDS

Combinatorics, Backtracking, Distributed Computing, Parallelism,
Clique Search, Finite Geometry

1 INTRODUCTION

Many algebraic structures, e.g. graphs, groups, or geometries, pos-
sess a rich space of substructures. Exploring this space, e.g. search-
ing for a substructure with certain properties, or simply enumer-
ating all substructures of a certain kind, is a common problem in
mathematical research. The sheer size and complexity of the search
space makes such exploration a hard combinatorial search problem.

Running combinatorial searches sequentially, i.e. on a single
CPU core, may take weeks or months (or longer), which is often
too long to be useful. A parallel search algorithm, e.g. running on
a shared memory multicore machine, may reduce the search time.

PASCO 2017, Kaiserslautern, Germany

© 2017 ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published in
Proceedings of PASCO 2017, July 23-24, 2017, http://dx.doi.org/.1145/3115936.3115942.

Patrick Maier
University of Glasgow
Patrick.Maier@glasgow.ac.uk

Robert Stewart
Heriot-Watt University
R.Stewart@hw.ac.uk

Jan De Beule

Vrije Universiteit Brussel
Jan.De.Beule@vub.ac.be

Considering the sheer size of the spaces we would like to search,
however, the limited parallel capabilities offered by shared-memory
machines are insufficient. Instead, a useful parallel combinatorial
search must scale beyond these limits to distributed memory plat-
forms, e.g. compute clusters and supercomputers, to stand a chance
of reducing search times from several months to a few hours.

Combinatorial search algorithms are typically based on back-
tracking search combined with heuristics for guiding the search
order and pruning infeasible branches of the search tree. Paral-
lelising such algorithms is challenging due to the irregular shape
of the search tree and due to the dependencies introduced by or-
der and pruning heuristics. Moreover, scaling parallel search to
hundreds or thousands of cores generally requires expert parallel
programming skills. A generic parallel framework for scalable com-
binatorial search would alleviate these engineering challenges, and
make scalable search available to users without extensive parallel
programming skills.

In this paper, we propose a framework for parallelising hard
combinatorial search problems. For scaling to compute clusters and
even supercomputers, the framework is built around a distributed
memory task parallel programming model. The framework relies
on sophisticated distributed work stealing algorithms to smooth
load imbalances caused by the irregularity inherent in parallel
combinatorial searches. To the user the framework presents itself
as generic algorithmic skeletons for parallel combinatorial search,
hiding the complex coordination required to scale such searches.

Outline and Contributions. Section 2 introduces a generic API for
combinatorial search in terms of generating and pruning a search
tree, and goes on to classify combinatorial search problems and
discuss the implications for parallel search. The paper then makes
the following novel research contributions:

e We a propose a scalable framework for solving hard com-
binatorial problems. Key elements of the framework are
distributed memory task parallelism; work-stealing; and al-
gorithmic skeletons. We outline two implementations: the
Haskell Tree Search Library (HTSL) [3] based on HdpH [16]
and a prototype C++ Tree Search Library (CTSL) based on
HPX [14], the latter being entirely novel (Section 3).

o We demonstrate the generality of the framework by exhibit-
ing CTSL and HTSL implementations of maximum clique
searches in graphs (Section 4), and deciding if a maximal
spread exists in the geometry H(4, 22), thereby showing
that parallel clique search algorithms are a feasible way
to attack problems in finite geometry (Section 5). To im-
plement the spread search we define a novel skeleton for

http://dx.doi.org/.1145/3115936.3115942

PASCO 2017, July 23-24, 2017, Kaiserslautern, Germany

Figure 1: A graph with maximum clique {a,d, f, g}.

combinatorial decision problems, and provide an HTSL
implementation (Section 5.3).

While the HTSL maximum clique implementation and
performance have previously been reported [3], all CTSL
results are new, as are all spread search results. To our
knowledge this is the first ever distributed-memory parallel
search for spreads in finite geometries, albeit a relatively
naive search.

e We demonstrate the scalability of the approach on a 17-
host 272-core Beowulf cluster, scaling the searches to use
up to 200 workers. On a benchmark suite of 13 standard
instances, the highest maximum clique speedups are 149
for HTSL and 76 for CTSL (Section 4.2). We validate a
known result in finite geometry, namely that there is no
spread in H(4, 22) in around 4.5 minutes (CTSL) and around
20 minutes (HTSL); the highest speedups are 81 for HTSL
and 60 for CTSL (Section 5.4). The datasets supporting this
evaluation are available from an open access archive [2].

2 TREE SEARCH PROBLEMS

This section presents a generic backtracking search algorithm, sam-
ple instantiations to concrete search problems, and an analysis of
the challenges for parallelising backtracking search.

Searching for cliques in graphs is core to both case studies in
this work: finding a maximum clique in a graph (Section 4) and
deciding if a spread exists in H(4, 22) (Section 5). To this end, we
use clique search as an illustrative example throughout this section.

A clique is a set of pairwise adjacent vertices in an undirected
graph; for example, the set {a, b, c} is a clique of the graph in Fig-
ure 1 whereas the set {a, b, h} is not. Given a graph and a positive
integer k, the k-clique problem is to decide whether the graph con-
tains a clique of k vertices. Given a graph, the maximum clique
problem is to find a clique of maximum size; e.g. {a,d, f, g} is such
a maximum clique of the graph in Figure 1.

2.1 Combinatorial Search

Combinatorial search problems typically look for a substructure
satisfying certain properties within a larger structure or space, for
instance a clique of size 33 or a maximum clique in a graph. A
typical approach to solving such problems systematically traverses
a search tree, where each node represents a (partial) substructure,
and each of its children extends that substructure. A backtracking
search descends down a path of the tree as long as the substructure
can be extended, otherwise it backs up to the parent node and de-
scends down another path. While traversing the tree, a maximising

Archibald, Maier, Trinder, Stewart, and De Beule

backtracking search selects a substructure (typically the first one)
that maximises the desired property. Backtracking searches can
often be sped up by pruning subtrees that are heuristically shown
not to harbour substructures with the desired property.

Node max_search(Node incumbent, Node current):
if prune (incumbent, current):
return incumbent

// Maximise property by strengthening incumbent
if property(current) > property(incumbent):
incumbent «— current

// Recurse to children, in the order generated
for child <« generate(current):
incumbent < max_search(incumbent, child)

return incumbent

Algorithm 1: Generic maximising backtracking search

A generic backtracking search, such as max_search in Algo-
rithm 1, recursively traverses the search tree below the current node
and returns the incumbent. That is, the first node that maximises
the desired property. The generic search operates on an abstract
Node type and depends on three function parameters: Function
generate returns a list of all children of the current node, function
property expresses the property to be maximised, and predicate
prune decides whether to skip the subtree below the current node
because the nodes therein cannot strengthen the incumbent. We il-
lustrate backtracking search by instantiating the generic algorithm
to two clique search problems.

2.1.1 Optimality Search. Backtracking search can be used to
find an optimal substructure, for example, a clique of maximum size
in an undirected graph. The equations below specify the function
parameters for solving the maximum clique problem using the
generic max_search algorithm above. In this case, search tree nodes
are triples of the form (G, C, V'), where G is (a reference to) the input
graph, C is a set of vertices forming a clique in G, and V is a set of
candidate vertices that may extend C while maintaining the clique
property. Calling max_search(root, root), where root = (G, 0, V)
is the root node of the search tree and Vi the set of all vertices of
G, will return a node (G, C, 0) such that C is a clique of maximum
size.

[Node] generate(Node (G,C,V)) =4ef
[{(G,C1,V1),...,{G,Cp, V,)] where
V={uy,...,un},
Ci =CU{u;}and
Vi={veV\{u,...

int property(Node (G,C,V)) =ger |C|

bool prune(Node {_, C,), Node (G,C,V)) =ger
|C| + colours(G,V) < |C|

,ui} | Ci U {v} is a clique in G}

Function generate enumerates all children of the current node
as a list; each child node (G, C;, V;) adds a candidate vertex u; to
the current clique C and adjusts the set of candidates to maintain

Towards Generic Scalable Parallel Combinatorial Search

the candidate invariant. Function property just returns the size of
the current clique.

Heuristics for pruning maximum clique searches are well studied;
see [26] for a review. The heuristic chosen here, and in current
state-of-the-art parallel branch-and-bound solvers [8, 17], relies
on fast graph colouring algorithms for bounding the clique size
by the number of colours used. A subtree is pruned if the bound
|C| + colours(G, V) cannot beat |5| the size of incumbent clique.

The effectiveness of pruning depends on the strength of the
incumbent; the bigger the incumbent the more can be pruned.
Therefore, the search order is important, and many search algo-
rithms [17] prioritise paths in the search tree that are likely to yield
larger cliques. The generate function offers a way to control search
order since it returns the current node’s children as an ordered list.
For simplicity, the above definition of generate picks an arbitrary
order.

2.1.2 Decision Problems. Backtracking search can also be used
to solve decision problems where we wish to check the existence
of substructures within the search space, for example checking
whether a graph has a clique of a given size k. This is a seemingly
different problem, as finding such a clique requires terminating the
search early without traversing the entire search tree. However,
early termination can be viewed as pruning, and the k-clique prob-
lem can be solved by another instance of the generic max_search
algorithm. The equations below specify the three function param-
eters. Search tree nodes are quadruples of the form (k,G,C, V),
where k is a positive integer specifying the desired clique size,
and G, C, V are as before. Calling max_search(root, root), where
root = (k, G, 0, V), will either return the root node (in case G has
no k-clique) or a node (k, G, C, V) such that C is a clique of size k.

[Node] generate(Node (k,G,C,V)) =gef
[{k,G,C1,V1),...,(k,G,Cpn, Vy)] where ...

bool property(Node (k,G,C,V)) =¢er |IC| = k

bool prune(Node (_, _,C,_), Node (k,G,C,V)) =gef
|C| = k or |C| + colours(G,V) < k

Function generate is the same as for maximum clique search,
mutatis mutandis. Function property is a predicate testing whether
the current clique is of size k. Note that property being a predi-
cate implies that the incumbent can be strengthened at most once.
Predicate prune is a disjunction of two conditions. The first part en-
sures early termination once the incumbent has been strengthened
by testing whether the incumbent clique C is of size k. The sec-
ond prunes infeasible subtrees using a colouring-based bounding
heuristic similar to that used in a maximum clique search.

2.2 Parallel Tree Search

Parallel tree traversals often follow a divide-and-conquer paradigm,
creating a new parallel task for each subtree traversal. This ap-
proach does not work very well for search tree traversals, for two
reasons.

Firstly, search trees are highly imbalanced, and their exact shape
is not predictable prior to search, which results in highly irregular
task granularity. Dynamic scheduling, e.g. random work stealing,

PASCO 2017, July 23-24, 2017, Kaiserslautern, Germany

can load balance irregular tasks but only if most tasks exceed a
minimum granularity threshold that depends on the overhead in-
curred by dynamic scheduling. Unfortunately, pruning can turn
many tasks trivial, depending on the strength of the incumbent, ex-
acerbating the irregularity. Moreover, the randomness introduced
by dynamic scheduling can disrupt the search order, with dramatic
effects on performance [3].

Secondly, backtracking search does not quite fit the divide-and-
conquer scheme because subtree traversals aren’t independent but
share information via the incumbent; e.g. see how the for loop
of Algorithm 1 threads through the incumbent. Consequently,
parallel tasks need to share information, for example broadcasting
the incumbent whenever it has been strengthened.

The frequency of incumbent updates is one of the key differences
between optimality and decision searches. Optimality searches may
strengthen the incumbent many times; for instance, a maximum
clique search will update the incumbent k times when finding a
clique of size k. In contrast, decision searches will strengthen the
incumbent once (if the searched-for substructure exists) or never.
Yet, if the incumbent is never updated, subtree traversals do not
share information and can run independently in parallel, as in plain
divide-and-conquer. This justifies different implementations for
parallel backtracking search depending on the search type.

2.3 Skeletons for Combinatorial Search

The differences in parallel coordination between optimality searches
and decision searches can be abstracted into algorithmic skele-
tons [7], general parallel coordination patterns that are parame-
terised by the domain specific computation (e.g. clique search).
Table 1 categorises search skeletons implemented in HTSL (Sec-
tion 3.1) and CTSL (Section 3.2) by search type and by the search
order guarantees provided; entries in bold denote novel implemen-
tations contributed by this paper.

Table 1: HTSL and CTSL Skeleton Implementations

Ordered tasks Unordered tasks

HTSL, CTSL
HTSL, CTSL

Optimality search HTSL
Decision search

Previous work [3] explores the effect of preserving/not preserv-
ing search order on optimality searches, using skeletons imple-
mented in HTSL. This paper is not concerned with preserving
search order.

This paper contributes a new HTSL skeleton for decision search
and considers the performance of both the decision and optimal-
ity searches in HTSL and a prototype implementation in CTSL, a
new prototype tree search library. As CTSL does not yet provide
skeletons, CTSL applications are implemented directly on top of a
low-level library for dynamically scheduling task parallel computa-
tions on distributed memory platforms. We wish to show the two
implementations, based on the same core search algorithms, give
similar performance properties (accounting for sequential baseline
differences).

PASCO 2017, July 23-24, 2017, Kaiserslautern, Germany

2.4 Related Frameworks

While many tree search parallelisations are application specific, we
are not the first to generalise tree search computation patterns into
re-useable skeletons/framework, nor the first to support distributed
memory platforms.

MallBA [1] provides an entire suite of skeletons, encompassing
both exact and heuristic methods, for solving combinatorial search
problems. Problems are specified an object oriented manner with
the ability to run on distributed memory architectures via MPI. The
branch-and-bound algorithm relies on a central master scheduler,
as opposed to distributed work stealing here.

Muesli [21] is similar in taking a skeleton approach, in using C++,
and in providing distributed memory parallelism. Where Muesli
provides communication using MPI we use HPX. Muesli focuses on
branch-and-bound parallelism and studies how the choice of work
pool organisation, centralised or distributed, affects scalability and
search performance. The distributed model restricts communication
to a fixed ring topology, in contrast to our random work stealing
approach.

Bob++ [9] provides a high level object orientated model to de-
fine various optimality searches including branch-and-bound. Its
key feature is the use of a global priority queue structure that
decouples the application from the underlying parallelism frame-
work. This allows parallel execution on p-threads, MPI or Antha-
pascan/Kaapi [11]; the latter is similar to our approach in using
distributed work-stealing to balance irregular load.

We address compute bound problems here, but as with symbolic
computations in general, many searches are memory bound. In
these cases frameworks such as Roomy [15] may be used.

3 TASK PARALLEL LIBRARIES FOR
SCALABLE PARALLEL SEARCH

The combinatorial search from the previous section is general
enough to encode many well-known problems, for instance Travel-
ling Salesperson and 0/1 Knapsack [3]. This section details a task
parallel approach to parallelism and shows how to extract the com-
mon computation structure into algorithmic skeleton libraries for
parallel combinatorial search.

Tree searches map well to the task parallel model where each task
searches a subtree, potentially sharing new results with other tasks.
As the size of a subtree is unknown a priori, the time taken to search
a subtree is difficult to predict in advance, further complicated by
dynamic pruning. To deal with the high degree of irregularity
we, like many others [11, 12], use work-stealing scheduling to
dynamically manage load. Figure 2 shows the interaction between
key components of the distributed task parallel model.

In the task parallel model a large computation is broken down
into smaller computations that are then shared between the avail-
able cores. These smaller computations may themselves generate
new tasks. Scaling to distributed memory architectures, such as
high performance computers, entails distributing tasks across multi-
ple hosts. Each host may run one or more operating system processes,
which in turn may be assigned multiple cores. Each subtree search
task is executed by a worker mapped to a core. The systems run
by having the scheduler assigning tasks to free workers as they
become available.

Archibald, Maier, Trinder, Stewart, and De Beule

! Host1 ' I HostM
I
: ProcessN v ' [Process
h [
h
' y” Workqueue E E
h
N ' Remot
j[processi”™ s 44 Pstear | Lt
' e L aeey
: Worker Worker Scheduler :
h
h
h
h
i ' !
h
h
l :
h
h
' h

'
'

'

'

1 '

Schedule Task '

T '
'

'

'

'

1
! T T

Figure 2: Framework Architecture for Distributed Task Par-
alleism

The number of tasks to be executed is generally far larger than
the number of workers. Additional search tasks are stored in
workqueues, where they remain unscheduled. Work stealing sched-
uling [5] moves unscheduled tasks from the workqueues of heavily
loaded processes to processes with empty workqueues. Steals may
be local or remote, with remote steals carrying a larger communi-
cation cost.

This paper considers two different parallel frameworks/run-
times each embodying the same asynchronous task-parallel model:
HdpH [16], a domain specific language embedded into Haskell, and
HPX [14], a parallel runtime system for C++. Specifics related to
coordinating parallel combinatorial search applications are layered
as libraries on top of these frameworks: the Haskell Tree Search
Library (HTSL) and the prototype C++ Tree Search Library (CTSL).
We outline the design of these new libraries and their underlying
frameworks in Sections 3.1 and 3.2.

3.1 Haskell Tree Search Library

The HdpH framework [16] provides distributed memory task-parallelism

for the Haskell programming language. Tasks are managed via two
work-stealing schedulers: A local thread scheduler for tasks that
have been scheduled for execution within a process, and a spark
scheduler that manages unscheduled tasks (called “sparks”). Only
sparks may be stolen by another process. Distributed work steal-
ing is done at random with the additional optimisation that victim
selection is biased to the last successful steal location.

Previous work [3] shows how a generic branch-and-bound API
similar to the generic backtracking search of Section 2.1 forms the
basis of the Haskell Tree Search Library (HTSL). The API supports
many branch-and-bound algorithms, e.g. clique search, travelling
salesperson, and knapsack. The parallel coordination of the branch-
and-bound pattern has been distilled into an algorithmic skele-
ton [7] that abstracts over all details of task generation, scheduling
and incumbent propagation. It further shows that task scheduling
plays a key role in predicting the performance characteristics of a
computation.

In Section 5.3 we show how the parallel coordination can be
altered to change a branch-and-bound optimality search skeleton
into an decision search skeleton.

3.2 C++ Tree Search Library

The overall performance of parallel implementations is crucially
dependent on the speed of the sequential tasks. Over a suite of

Towards Generic Scalable Parallel Combinatorial Search

benchmark problems the sequential (1 worker) Maximum Clique
performance of HTSL is between 1.9 and 6.2 times slower than
a class-leading, dedicated, and highly optimised C++ Maximum
Clique solver [3].

To obtain better sequential performance, and to have better
opportunities to move to HPC platforms, we have extended the C++
parallel framework HPX to support HdpH-style distributed work
stealing and re-implemented Maximum Clique on top. Our work
stealing currently uses simple random victim selection biased to
the location of the last successful steal.

HPX provides support for globally addressable objects via a par-
titioned global address space, and this feature is used to implement
distributed globally accessible work queues. One core per pro-
cess is dedicated to balance load by invoking steal tasks on remote
workqueues.

The C++ Tree Search Library (CTSL) combines the application
code with the distributed work-stealing scheduler. The current pro-
totype library provides only a low-level task-parallel coordination
layer based on HPX primitives. Higher-level abstractions, such as
algorithmic skeletons for combinatorial search based on the generic
API of Section 2, are planned for future work.

3.3 Case Studies and Experimental Setup

To show that libraries based on a task parallel, work-stealing, and
skeleton approach lead to a framework that is both general and
scalable, we consider two case studies: finding a maximum clique
in a graph (Section 4), and checking if a spread exists in a finite
geometry (Section 5).

Generality is shown by the fact that two separate libraries, based
on the same computation model, implement both case studies and
achieve similar performance (when accounting for differences in
sequential runtime). Scalability is investigated by subjecting both
libraries to the same strong scaling experiments.

CTSL and HTSL are evaluated on a Beowulf cluster consisting of
17 hosts each with dual 8-core Intel Xeon E5-2640v2 CPUs (2Ghz),
64GB of RAM and running Ubuntu 14.04.3 LTS. HTSL is compiled
with GHC 8.0.1, CTSL with gcc 6.3.0 and HPX 1.0.

We allocate workers + 1 cores per process in order to in have
one spare core per process available for handling distributed work-
stealing. To avoid over-subscription we allocate a maximum of 3
processes per host, and a maximum of 5 cores per process.!

4 PARALLEL MAXIMUM CLIQUE

We investigate the parallel performance of HTSL and CTSL imple-
mentations of maximum clique searches, as outlined in Section 2.
Although it is possible to guarantee strong performance properties
by preserving sequential search ordering [3] this requires a single
source of work. For simplicity, and to improve scalability by elim-
inating the single work source bottleneck, we use an unordered
search here.

Performance issues in the GHC runtime system prevent HTSL from scaling to more
than 5 cores per process. CTSL could handle more cores; we limit CTSL to 5 cores per
process in the interest of a fair comparison.

PASCO 2017, July 23-24, 2017, Kaiserslautern, Germany

4.1 Maximum Clique Implementations

Both implementations use the MCsal algorithm [22] with bit en-
coding of candidate vertices to enable fast colouring [23] for both
calculating an upper bound and determining a branch ordering.

New tasks are generated for each search tree node above some
depth threshold. Tasks below the threshold execute sequentially,
except for asynchronous bound updates. While simple to imple-
ment, this approach requires the setting of an appropriate depth
threshold in order to generate sufficiently many tasks. The optimal
threshold value depends both on the shape of the search tree and
the size of the target architecture.

The HTSL implementation uses generic skeletons, but the CTSL
one is a direct implementation, i.e. without skeletons. The source
code for the HTSL and CTSL implementations is available at https://
doi.org/10.5281/zenodo.556548 and https://doi.org/10.5281/zenodo.
556546, respectively.

4.2 Maximum Clique Performance

We evaluate the performance of the CTSL and HTSL maximum
clique search implementations on thirteen of the DIMACS clique
instances [13]. This set of instances was chosen such that sequential
runtimes were no longer than eight hours while also being long
enough to enable parallelism to be useful. Results are reported as
the mean over ten executions, and the depth threshold is two in
all cases. While there is potentially high runtime variance in an
unordered search, we have found ten runs give a balance between
obtaining a good estimate of the runtime and the time required to
obtain more samples.

Figure 3 shows the parallel speedups, relative to a single worker,
for the HTSL maximum clique searches.

HTSL scales well especially for the larger instances, achieving
a maximum speedup of 149 for 200 workers showing the ability
to successfully scale even highly irregular searches. The instances
that scale poorly tend to have low sequential runtimes where rela-
tively high communication overheads probably limit the benefits
of parallelism.

Figure 4 shows the CTSL relative speedups and, as for HTSL,
the instances with the largest sequential times tend to scale the
best. While the maximum speedup is only 76 on 200 workers CTSL
shows promise towards tackling larger instances.

Table 2 shows a random sample of five maximum clique in-
stances 2. The first 5 rows show that the CTSL sequential runtimes
(in seconds) are significantly lower than the HTSL runtimes. How-
ever the second 5 rows of the table show that HTSL scales better
than CTSL; the parallel runtimes are far closer, with HTSL even
outperforming CTSL on some instances. The scalability differences
are likely caused by the immature scheduler/workqueue implemen-
tation present in CTSL.

These results should be treated with caution: the CTSL imple-
mentation is direct and may therefore avoid some of the overheads
of generic skeletons. Moreover, the unordered search used by both
libraries gives rise to unpredictable performance as two searches
may traverse the search tree in different order [3]. Due to inter-
nal workqueue management even the the single worker CTSL and
HTSL implementations may follow different search orders.

2For lack of space

https://doi.org/10.5281/zenodo.556548
https://doi.org/10.5281/zenodo.556548
https://doi.org/10.5281/zenodo.556546
https://doi.org/10.5281/zenodo.556546

PASCO 2017, July 23-24, 2017, Kaiserslautern, Germany

Archibald, Maier, Trinder, Stewart, and De Beule

| 150- -
Q_150 o -
S P =) -
2 Pad brock400 1 k5 ’,"
©100- ‘ ? brock400—3 ~ Z100- 10 Ts< BFggﬁgg‘ﬁ
3 L/ -.:2=~" --brock800_1 %) 47 -- brock800~2
S - -brock800” 3 o X4 - -brock800 4
< S T - p_hat1000-2 & hat500=3
2 50- P p_hat700-3 5 50- Sanr200_0.9
] g sanr400_0.7 % ’ -
) "
0+ 7 07
1 32 64 128 200 1 32 64 128 200
Workers Workers
Figure 3: HTSL Maximum Clique Speedups
80- 80+
S - =
g60- P g 60- --"
) L brock400_1 3 -~ brock400_2
8_ pats brock400~3 o i brock400"4
) PG -- brock800_1) R -- brock800—2
40- % --brockg00 3 1407 s - - brock800~4
2 g B e
= -) 4 4
©20- %% g sanr400_0.7 $20- 7% sanr200_0.9
0] / Q P g
@ o /
0- 07
1 32 64 128 200 1 32 64 128 200
Workers Workers

Figure 4: CTSL Maximum Clique Speedups

Table 2: Sample of CTSL/HTSL Maximum Clique Runtimes

CTSL HTSL
Instance/Density ~Workers Time (s) Speedup Time (s) Speedup
brock400_4/0.75 1 84.76 1 245.93 1
brock800-2/0.65 1 3388.08 1 24333.23 1
p-hat1000-2/0.49 1 148.12 1 297.22 1
sanr200.0.9/0.9 1 34.13 1 108.80 1
sanr400-0.7/0.7 1 78.36 1 306.35 1
brock400_4/0.75 200 4.10 21 4.04 61
brock800_2/0.65 200 53.77 63 269.98 90
p-hat1000-2/0.49 200 11.43 13 4.64 64
sanr200-0.9/0.9 200 1.71 20 2.46 44
sanr400.0.7/0.7 200 3.37 23 4.06 75

5 EXISTENCE OF SPREADS IN FINITE
GEOMETRIES

We investigate the parallel performance of HTSL and CTSL im-

plementations of a decision problem: seeking spreads in finite

geometries. We begin by introducing finite geometry and showing
how to map spread searches to clique searches. We then discuss

the changes required to convert the optimality search skeleton into
a decision search skeleton, and present performance results. Lastly
we sketch improvements (Section 5.5) necessary for tackling larger
geometries in future.

5.1 Background

Incidence geometry is the study of structures consisting of elements
(points, lines, planes, etc.) and an incidence relation that determines
e.g. which points belong to which lines or planes, which lines
intersect in a point, or which lines do not have points in common.
Incidence geometry has it origin in the axiomatic study of classical
Euclidean geometry; its history and development over the 20th
century has been extensively described in [6].

Finite geometry is concerned with incidence structures consisting
of a finite number of elements; such structures arise naturally when
considering algebraic geometry over finite fields. Historically, finite
geometry also played a role in the study of finite groups of Lie type,
which act in a natural way on certain geometric spaces and give
rise to a correspondence between subgroups on the one hand and
geometric substructures on the other.

Finite geometry has obvious connections to algebraic combina-
torics since many finite geometries give rise to strongly regular

Towards Generic Scalable Parallel Combinatorial Search

graphs, or more generally, to association schemes. Generally speak-
ing, one is interested in certain substructures of a finite geometry,
and such substructures correspond e.g. to certain cliques of the asso-
ciated graph. The case study described in this section is an example,
where the geometric space in question is a so-called generalised
quadrangle, and the geometric substructure a so-called spread.

A finite generalised quadrangle (GQ) is a point-line geometry
(P, B,1), where P is a set of points, B is a set of lines, and I is an
symmetric incidence relation satisfying the following axioms.

(1) Every point P € P is incident with ¢ + 1 lines, ¢t > 1.

(2) Every line I € 8 is incident with s + 1 points, s > 1.

(3) Given a point P and a line I not incident with P, there
exists a unique line m incident with P and a unique point
Q incident with m such that Q is also incident with .

The pair (s, t) is called the order of the GQ. A GQ of order (s, t) has
exactly (st + 1)(s + 1) points and (st + 1)(¢ + 1) lines. Examples
of GQs are found by considering non-degenerate sesquilinear or
non-singular quadratic forms of Witt index two on vector spaces
over a finite field. These GQs are called the classical generalised
quadrangles. A well-known classical GQ of order (¢, ¢°), ¢ a prime
power, is H(4, %), which arises as the set of projective points of a
non-degenerate Hermitian variety in four dimensions over the finite
field of size g® [20]. Its collineation group, i.e. the set of incidence-
preserving permutations on points, is denoted by PT'U(4,¢%). A
spread of a GQ of order (s, t) is a set S of lines, such that every
point of the GQ is incident with exactly one line of S; in other
words, each point of the GQ is covered by exactly one line. By a
counting argument, a spread consists of exactly st + 1 lines. Some
GQs have spreads, others don’t. For most classical GQs the existence
of spreads is settled; H(4, ¢°) is a notorious open case, where the
only known fact is the non-existence of spreads for g = 2 [20].

5.2 Spread Search as Clique Search

The question of whether a GQ of order (s, t) has a spread can be
reduced to a clique search problem as follows. Let G be the com-
plement of the line graph of the GQ. That is, the vertices of G are
the lines of the GQ, and two lines are adjacent in G if and only if
they do not have any points in common. Note that the graph G is
highly symmetric; in fact, its automorphism group coincides with
the collineation group of the GQ.

A spread of the GQ is obviously a clique of G of size st + 1.
Conversely, a clique of size k in G is a set of k lines of the GQ
that have no points in common and hence cover k(s + 1) points.
Consequently, a clique of size st + 1 is a set of st + 1 lines covering
all points of the GQ, hence it must be a spread.

Using the GAP computational algebra system [25] with packages
fining [4] and grape [24], we have generated the complement line
graphs for the GQs H(4, 2%) and H(4, 3). Table 3 shows the key
properties of these graphs, including the size of the spread/clique
to search for. We note that the graphs are dense to very dense and
have lots of symmetries.

5.3 Decision Skeleton

The search for spreads takes the form of a decision problem (Sec-
tion 2.1.2). While the search tree is enumerated in the same divide

PASCO 2017, July 23-24, 2017, Kaiserslautern, Germany

Table 3: Properties of the complement line graphs for
H(4, ¢%) where ¢ = 2,3

GQ vertices density automorphisms spread size

H(4, 2%) 297 0.865
H(4,3%) 6832 0.960

27,371,520 33
516,381,143,040 244

and conquer way as the maximum clique searches (Section 4) there
are two key differences:

(1) Bound propagation is not required; the bound is static and
calculated prior to search.

(2) Searches may terminate early, if existence is proved. While
an optimality search must traverse (or prune) the full tree
to prove optimality, a decision search can terminate as
soon as the result is known.

Both libraries realise early termination by passing (a reference to)
a distinguished global variable to each worker that, when written
to, terminates the search. This differs slightly from the model in Sec-
tion 2.1.2 where the prune predicate ensures that all branches are
pruned once existence is proved. The HTSL/CTSL implementations
(1) terminate the search instantly without suffering the overheads
of individually pruning tens of thousands of tasks, and (2) support
instant termination directly in the coordination layer rather than
via the user defined prune predicate.

As argued in Section 2.1.2, although the coordination of the search
is different, the decision search API remains the same as the opti-
mality search API, promoting the reuse of existing functionality.

The differences between the optimisation and decision skeletons
are highlighted in the pseudo-code listings in Figure 5. Unlike the
max_search function (Algorithm 1) the incumbent is globally read-
able by all workers and is atomically updated via the globalUpdate
function. All parallelism is introduced in the parfor loop by con-
structing a new search task for each child up to the given maxDepth
threshold. The killAllWorkers function explicitly terminates all
workers rather than relying on repeated pruning. This allows us to
use a completely unmodified pruning function from the optimisa-
tion case and can reduce termination time.

5.4 Decision Search Performance

We have implemented the decision search as a skeleton in HTSL
and developed a specific clique search implementation in CTSL.
Both implementations re-use data structures and functionality of
the maximum clique implementations in Section 4.

For both libraries the search is run with 1 — 200 workers (1 — 50
processes) distributed across 17 hosts. Due to the high runtimes, and
as we are not investigating performance variability of the runtimes,
a single sample is taken for each data point. CTSL runtimes are
inclusive of small startup/shutdown overheads (to avoid problems
caused by spurious premature shutdown).

The runtime and speedups for both libraries are shown in Table 4.
Even on a single core, HTSL can validate that no spread exists in
H(4, 2%) in approximately a day. The CTSL single core runtimes
are far lower: just over 4 hours compared to just over 26.5 hours
for HTSL. As for the maximum clique searches (Section 4.2) HTSL
scales better than CTSL.

PASCO 2017, July 23-24, 2017, Kaiserslautern, Germany

global Node incumbent

Node search (int maxDepth, Node root):
globalUpdate (incumbent, root)

maxSearch (maxDepth, root)

return incumbent

void maxSearch(int depth, Node current):
if prune(incumbent, current):
return

if property(current) > property (incumbent):
globalUpdate (incumbent, current)

children = generate(current)
if depth > 0:
parfor child in children:
maxSearch(depth — 1, child)
else:
for child in children:
maxSearch (0, child)

Archibald, Maier, Trinder, Stewart, and De Beule

global Node incumbent

Node search (int maxDepth, Node root):
globalUpdate (incumbent, root)

decisionSearch (maxDepth, root)

if incumbent == root:
return null

else:
return incumbent

void decisionSearch(int depth, Node current):
if prune(incumbent, current):
return

if property(current):
globalUpdate (incumbent, current)
killAllWorkers ()
return

children = generate(current)
if depth > 0:
parfor child in children:
decisionSearch (depth — 1, child)
else:
for child in children:
decisionSearch (0, child)

Figure 5: Pseudo-code for optimisation skeleton (left) and decision skeleton (right). User provided functions underlined

Table 4: Runtime and Speedup of Decision Search for
Spreads in H(4, 2%)

CTSL HTSL
Workers Time (s) Speedup Time (s) Speedup
1 16005 1.0 95980 1.0
2 13526 1.2 50946 1.9
4 13234 1.2 27643 3.5
8 3905 4.1 14096 6.8
32 885 18.1 3860 24.9
64 483 33.1 2082 46.1
128 348 46.0 1299 73.9
200 265 60.4 1190 80.6

The results clearly show the benefit of parallelism for spread
searches in finite-geometry problems taking the runtime down
from just over 26.5 hours to around 20 minutes for HTSL and from
just over 4 hours to under 4.5 minutes for CTSL.

5.5 Symmetry Breaking

So far, we have presented a brute force approach to checking the
existence of spreads, searching the entire graph regardless of sym-
metries. While this works for H(4, 22), it is unlikely to scale to
much larger spaces like H(4, 32), which is more than 20 times as
big (Table 3).

The symmetries of the spreads search space are determined by
the collineation group of the GQ. For H(4, ¢%) this group is well
known and has an efficient representation in the GAP package
fining. Thus, we can break symmetry by orbital branching [19],
significantly reducing the branching factor of the search tree.

This section shows orbital branching to be an instance of the
generic search algorithm from Section 2. It then demonstrates
the impact of both symmetry breaking and of the colouring-based
pruning heuristic on the performance of spreads search for H(4, 2%).

Notation. Let G be the complement line graph of a GQ and let
H be a subgroup of G’s automorphism group Aut(G). That is, H is
a permutation group on the vertices of G. The set uf denotes the
orbit of vertex u under H, i.e. the set of all images of u under the
permutations in H; orbitsg (V) = {vH|v € V} is the partition of
a set of vertices V into orbits under H. Finally, Aut(G)c denotes
the subgroup H of Aut(G) that stabilises the set of vertices C, i.e.
ufl ¢ Cforalluec.

5.5.1 Symmetry breaking clique search. To take symmetries into
account in the k-clique search of Section 2.1.2, we modify the
generate function to branch on the orbits of candidates rather than
on the candidates themselves, as follows. (Functions property and
prune are unchanged.)

[Node] generate(Node (k,G,C,V)) =get
[<k,G,C1,V1),...,{k,G,Cpn, Vy)] where
H = Aut(G)¢, orbitsg(V) = {u{{, e ,uf},
Ci =CU{u;}and
Vi={v€V|v¢u{{U...Uu£1U{ui},
Ci U {v} is a clique in G}

Function generate enumerates the orbits of the candidate set V'
under the automorphims of G that stabilise the current clique C.
Each child node (k, G, C;, V;) adds a representative u; of the orbit
u{{ to the current clique and adjusts the set of candidates to maintain
the candidate invariant. Note that the set of candidates V; excludes
vertices occuring in orbits uJH with j < i. Ordering the orbits

Towards Generic Scalable Parallel Combinatorial Search

Table 5: Subproblems at level [of the search tree for spreads
in H(4, 2%) and H(4, 3%)

GQ level problems vertices automorphisms

0 1 297 27,371,520
1 1 256 92,106
H(4, 2%) 2 1 220 720
3 1 189 18
4 7 69-161 1-4
0 1 6832 516,381,143,040
1 1 6561 75,582,720
H(4, 3%) 2 1 6300 23,040
3 3 1433-6049 24-48
4 329 933-5803 1-12

descending by size is therefore likely to minimize the number of
candidates in V;.

Stabilisers and orbits can be computed by GAP but the cost of
these computations can be significant. Fortunately, the stabiliser is
getting smaller as the size of C increases and eventually becomes
trivial. At that point, orbital branching reverts to ordinary branch-
ing, i.e. the generate function above behaves exactly like the one
in Section 2.1.2. This justifies a two-phase approach to searching
for spreads of size k:

(1) Start a symmetry-breaking search in GAP to the level [of
the search tree where stabilisers become (nearly) trivial.

(2) Foreachnode (k,G,C,V) atlevel], generate a (k—1)-clique
search problem in the subgraph of G induced by the set of
candidates V, and solve using HTSL or CTSL.

5.5.2 Performance of two-phase search. Table 5 lists the number
and sizes of subproblems generated by the first search phase for
H(4, 2%). Up to level 3 there is only a single subproblem (that hasn’t
been pruned away), and there are 7 subproblems at level 4, ranging
from 69 to 161 vertices in size. Stabilisers at level 4 are nearly trivial
(at most order 4), justifying a switch to the second phase. GAP
takes around 20 seconds to generate the entire level 4 of this search
tree.

Each of the level 4 subproblems is small enough to be solved
by CTSL on a single worker in less than a second. That is, the
two-phase approach can reduce the spreads search time from 4
hours to under 1 minute, on a single core.

The level 4 subproblems are small enough to allow us to examine
the impact of the pruning heuristic on the search space. Figure 6
compares the sizes of the search trees when using the colouring-
based pruning heuristic against a simpler pruning heuristic that
only takes into account the size of the candidate set. The graphs
show that for these 7 subproblems, colouring-based pruning re-
duces the size of the search space by four orders of magnitude.
This demonstrates that symmetry breaking and pruning are both
important for efficient combinatorial search.

5.5.3 Outlook: Spreads in H(4,3%). Table 5 also lists the number
and sizes of subproblems generated by the GAP search phase for
H(4, 32). The picture is similar to H(4, 22), if scaled up. At level 3
there are 3 subproblems yet stabilisers aren’t quite trivial. Level 4

PASCO 2017, July 23-24, 2017, Kaiserslautern, Germany

% le+10 - with coloring o ’) 1
3 without coloring — +
g +
o
- le+08 : : : - =
3
3 +
2
5 1e+06 |- T . .
3
g t
= 10000 . . i P i
o
N
@
] 100 |-) . o ; o
L ;
=
=
69 84 97 114 132 147 161

subproblem size (number of vertices)

Figure 6: Search tree size of level 4 subproblems of spreads
search in H(4, 22), with and without colouring

has 329 subproblems, 933 to 5803 vertices big, and stabilisers are
nearly trivial (most are of orders 1, 2 or 4, only four are of orders
8 or 12). GAP takes around 90 minutes to generate level 4 of this
search tree.

While GAP is able to compute the upper levels of the search
tree in a reasonable time, the subproblems generated are generally
too big to be tackled by CTSL in its current state and on our small
cluster. Experiments with a random selection of subproblems show
that problems with less than 1200 vertices tend to be easy, whereas
problems with more than 1300 vertices are computationally hard.

6 CONCLUSION

We propose attacking hard combinatorial problems using a scal-
able and generic framework comprising distributed memory task
parallelism, work-stealing, and algorithmic skeletons. We outline
two implementations of the framework: a mature Haskell library
(HTSL), and a C++ library (CTSL) in early prototype state (Sec-
tion 3).

We demonstrate the generality of the framework approach with
CTSL and HTSL implementations of maximum clique searches in
graphs (Section 4), and checking if a spread exists in the generalised
quadrangle H(4, 22). This demonstrates that parallel clique search
algorithms are a feasible way to attack problems in finite geometry
(Section 5).

We demonstrate the scalability of the approach by evaluating the
performance of the finite geometry decision problem (Section 5.4)
and 13 DIMACS maximum clique searches (Section 4.2) on a 17-host
272-core Beowulf cluster. The speedups with up to 200 workers
are promising for both libraries. Unsurprisingly CTSL has lower
sequential runtimes than HTSL, but does not yet scale as well.
However, as C++ is the de-facto standard in high-performance com-
puting, and as a C++ library eases the interoperability with domain-
specific C++ libraries, e.g. for breaking symmetries in combinatorial
problems, improving CTSL is a worthwhile goal.

Future Work

In the long term our aim is to explore the potential of skeleton-
based software libraries for addressing the challenges of parallel

PASCO 2017, July 23-24, 2017, Kaiserslautern, Germany

combinatorial search. Much remains to be done to realise this vision,
and some immediate steps to advance the work are as follows.

While the improved sequential runtimes of CTSL over HTSL are
encouraging, we hope to improve the scaling of CTSL to match
HTSL. As a first step we plan to implement search skeletons in
CTSL and analyse the overheads. We will exploit low overhead
methods like C++ template metaprogramming [10].

Much recent work-stealing scheduler research has focused on the
unbalanced tree search benchmark [18]. This benchmark has many
properties of our searches, although not pruning. The separation of
application and scheduler afforded by the skeleton approach will
let us investigate many of these techniques further and analyse the
effects of the scheduler on the various types of tree search such as
enumeration, decision problems and optimisation.

A key step in further investigation of the spreads problem is the
use of symmetry breaking to reduce the search space Section 5.5.
The API given in Section 2.1 is general enough to encode this by
making no distinction on how the child nodes are generated. There
are many choices on how to best perform symmetry breaking in
this context: symmetries can be broken ahead of time, generating
N smaller graphs to search, or at runtime. In both cases we require
tooling to compute orbits and stabilisers based on subgroups of the
collineation group of the geometry. While GAP with the fining
package is appropriate for a-priori symmetry breaking, it is not
clear whether a custom high-performance implementation would
be required for scaling search to an HPC environment.

Breaking symmetries also leads to additional computational prob-
lems in the search. The reduction in search space will likely reduce
the effectiveness of threshold-based work generation, and new
methods for generating work will need to be explored. This issue
is particularly prevalent in finite geometry problems where after
breaking symmetry the tree tends to be very narrow, i.e. have few
orbits, at the upper levels.

The next algebraic result we aim to establish using a combination
of the CTSL library, symmetry breaking and high performance
computing hardware is whether a spread exists in H(4, 3%).

ACKNOWLEDGMENTS

This work is funded by UK EPSRC grants AJITPar (EP/L000687),
CoDiMa (EP/M022641), Glasgow DTA (EP/K503058), MaRIONet
(EP/P006434), and Rathlin (EP/K009931). The last author was par-
tially supported by a research grant of the Research Foundation
Flanders (Belgium) (FWO) (1504514N). We also thank Ciaran Mc-
Creesh, Magnus Morton and the anonymous reviewers for their
feedback.

REFERENCES

[1] Enrique Alba, Francisco Almeida, Maria J. Blesa, J. Cabeza, Carlos Cotta, Manuel
Diaz, Isabel Dorta, Joaquim Gabarrd, Coromoto Leon, J. Luna, Luz Marina
Moreno, C. Pablos, Jordi Petit, Angélica Rojas, and Fatos Xhafa. 2002. MALLBA:
A Library of Skeletons for Combinatorial Optimisation. In Euro-Par 2002, Pader-
born, Germany (LNCS 2400). Springer, 927-932. DOI : http://dx.doi.org/10.1007/
3-540-45706-2_132

[2] Blair Archibald, Patrick Maier, Robert Stewart, Phil Trinder, and Jan De Beule.
2017. Towards Generic Scalable Parallel Combinatorial Search [Data Collection].
(2017). http://dx.doi.org/10.5525/gla.researchdata.430

[3] Blair Archibald, Ciaran McCreesh, Patrick Maier, Robert Stewart, and
Phil Trinder. 2017. Replicable Parallel Branch and Bound Search. (2017).
arXiv:1703.05647

10

[4]

(10]

(1]

[12

(14]

[15

[16

(17

(18

[19]

[20

[21

[22

[24

[25]

[26

Archibald, Maier, Trinder, Stewart, and De Beule

John Bamberg, Anton Betten, Philippe Cara, Jan De Beule, Michel Lavrauw,
and Max Neunhoffer. 2015. FinInG — Finite Incidence Geometry, Version 1.3.
http://cage.ugent.be/fining

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. 1996. Cilk: An Efficient Multithreaded
Runtime System. J. Parallel and Distrib. Comput. 37, 1 (1996), 55-69. DOI:
http://dx.doi.org/10.1006/jpdc.1996.0107

F. Buekenhout (Ed.). 1995. Handbook of Incidence Geometry. North-Holland,
Amsterdam.

Murray Cole. 1991. Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press.

Matjaz Depolli, Janez Konc, Kati Rozman, Roman Trobec, and Dusanka Janezic.
2013. Exact Parallel Maximum Clique Algorithm for General and Protein Graphs.
Journal of Chemical Information and Modeling 53, 9 (2013), 2217-2228. DOI:
http://dx.doi.org/10.1021/ci4002525

A. Djerrah, Bertrand Le Cun, Van-Dat Cung, and Catherine Roucairol. 2006.
Bob-++: Framework for Solving Optimization Problems with Branch-and-Bound
methods. In High Performance Distributed Computing, HPDC-15, Paris, France.
IEEE, 369-370. DOI : http://dx.doi.org/10.1109/HPDC.2006.1652188

J. Falcou, J. Sérot, T. Chateau, and J.T. Lapresté. 2006. Quaff: efficient C++
design for parallel skeletons. Parallel Comput. 32, 7-8 (2006), 604 — 615. DOI:
http://dx.doi.org/10.1016/j.parco.2006.06.001

Thierry Gautier, Xavier Besseron, and Laurent Pigeon. 2007. KAAPI: A thread
scheduling runtime system for data flow computations on cluster of multi-
processors. In Parallel Symbolic Computation, PASCO 2007, London, Ontario,
Canada. ACM, 15-23. DOI : http://dx.doi.org/10.1145/1278177.1278182

Yi Guo, Jisheng Zhao, Vincent Cavé, and Vivek Sarkar. 2010. SLAW: A scalable
locality-aware adaptive work-stealing scheduler. In 2010 IEEE International Sym-
posium on Parallel Distributed Processing, IPDPS 2010, Atlanta, Georgia, USA. 1-12.
DOI : http://dx.doi.org/10.1109/IPDPS.2010.5470425

David J. Johnson and Michael A. Trick (Eds.). Cliques, Coloring, and Satisfiabil-
ity: Second DIMACS Implementation Challenge, Workshop, October 11-13, 1993.
American Mathematical Society.

Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and
Dietmar Fey. 2014. HPX: A Task Based Programming Model in a Global Address
Space. In Partitioned Global Address Space Programming Models, PGAS 2014,
Eugene, Oregon, USA. ACM, Article 6. DOI:http://dx.doi.org/10.1145/2676870.
2676883

Daniel Kunkle. Roomy: A System for Space Limited Computations. In Parallel
Symbolic Computation, PASCO 2010, Grenoble, France. ACM, 22-25. DOI:http:
//dx.doi.org/10.1145/1837210.1837216

Patrick Maier, Robert Stewart, and Phil Trinder. 2014. The HdpH DSLs for Scalable
Reliable Computation. In 2014 ACM SIGPLAN Symposium on Haskell, Gothenburg,
Sweden. ACM, 65-76. DOI:http://dx.doi.org/10.1145/2633357.2633363

Ciaran McCreesh and Patrick Prosser. 2013. Multi-Threading a State-of-the-
Art Maximum Clique Algorithm. Algorithms 6, 4 (2013), 618-635. DOI:http:
//dx.doi.org/10.3390/26040618

Stephen Olivier, Jun Huan, Jinze Liu, Jan Prins, James Dinan, P. Sadayappan,
and Chau-Wen Tseng. 2007. UTS: An unbalanced tree search benchmark. In
Languages and Compilers for Parallel Computing, LCPC 2006, New Orleans, USA
(LNCS 4382). Springer, 235-250.

James Ostrowski, Jeff Linderoth, Fabrizio Rossi, and Stefano Smriglio. 2011.
Orbital branching. Mathematical Programming 126, 1 (2011), 147-178. DOI:
http://dx.doi.org/10.1007/s10107-009-0273-x

Stanley E. Payne and Joseph A. Thas. 2009. Finite Generalized Quadrangles (second
ed.). European Mathematical Society, Ziirich. DOI :http://dx.doi.org/10.4171/066
Michael Poldner and Herbert Kuchen. 2008. Algorithmic skeletons for branch
and bound. In International Conference on Software and Data Technologies, ICSOFT
2006. Springer, 204-219. DOI : http://dx.doi.org/10.1007/978-3-540-70621-2_17
Patrick Prosser. 2012. Exact Algorithms for Maximum Clique: A Computational
Study. Algorithms 5, 4 (2012), 545-587. DOI: http://dx.doi.org/10.3390/a5040545
Pablo San Segundo, Fernando Matia, Diego Rodriguez-Losada, and Miguel Her-
nando. 2011. An improved bit parallel exact maximum clique algorithm. Opti-
mization Letters 7, 3 (2011), 467-479.

Leonard Soicher. 2016. The GRAPE package for GAP, Version 4.7. http://www.
maths.qmul.ac.uk/~leonard/grape/

The GAP Group 2017. GAP — Groups, Algorithms, and Programming, Version 4.8.7.
The GAP Group. http://www.gap-system.org

Qinghua Wu and Jin-Kao Hao. 2015. A review on algorithms for maximum
clique problems. European Journal of Operational Research 242, 3 (2015), 693-709.
DOI : http://dx.doi.org/10.1016/j.ejor.2014.09.064

http://dx.doi.org/10.1007/3-540-45706-2_132
http://dx.doi.org/10.1007/3-540-45706-2_132
http://dx.doi.org/10.5525/gla.researchdata.430
http://arxiv.org/abs/1703.05647
http://cage.ugent.be/fining
http://dx.doi.org/10.1006/jpdc.1996.0107
http://dx.doi.org/10.1021/ci4002525
http://dx.doi.org/10.1109/HPDC.2006.1652188
http://dx.doi.org/10.1016/j.parco.2006.06.001
http://dx.doi.org/10.1145/1278177.1278182
http://dx.doi.org/10.1109/IPDPS.2010.5470425
http://dx.doi.org/10.1145/2676870.2676883
http://dx.doi.org/10.1145/2676870.2676883
http://dx.doi.org/10.1145/1837210.1837216
http://dx.doi.org/10.1145/1837210.1837216
http://dx.doi.org/10.1145/2633357.2633363
http://dx.doi.org/10.3390/a6040618
http://dx.doi.org/10.3390/a6040618
http://dx.doi.org/10.1007/s10107-009-0273-x
http://dx.doi.org/10.4171/066
http://dx.doi.org/10.1007/978-3-540-70621-2_17
http://dx.doi.org/10.3390/a5040545
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.maths.qmul.ac.uk/~leonard/grape/
http://www.gap-system.org
http://dx.doi.org/10.1016/j.ejor.2014.09.064

	Abstract
	1 Introduction
	2 Tree Search Problems
	2.1 Combinatorial Search
	2.2 Parallel Tree Search
	2.3 Skeletons for Combinatorial Search
	2.4 Related Frameworks

	3 Task Parallel Libraries for Scalable Parallel Search
	3.1 Haskell Tree Search Library
	3.2 C++ Tree Search Library
	3.3 Case Studies and Experimental Setup

	4 Parallel Maximum Clique
	4.1 Maximum Clique Implementations
	4.2 Maximum Clique Performance

	5 Existence of Spreads in Finite Geometries
	5.1 Background
	5.2 Spread Search as Clique Search
	5.3 Decision Skeleton
	5.4 Decision Search Performance
	5.5 Symmetry Breaking

	6 Conclusion
	Acknowledgments
	References

