
YewPar: Skeletons for Exact Combinatorial Search
(Operational Semantics Supplement)
Blair Archibald

University of Glasgow
Blair.Archibald@glasgow.ac.uk

Patrick Maier
University of Stirling

Patrick.Maier@stir.ac.uk

Robert Stewart
Heriot-Watt University
R.Stewart@hw.ac.uk

Phil Trinder
University of Glasgow

Phil.Trinder@glasgow.ac.uk

Abstract
This note presents an expanded version of Section 3 of the
paper YewPar: Skeletons for Exact Combinatorial Search [2]. It
is intended to supplement that paper with a more detailed ac-
count of the operational semantics, including detailed proof
sketches and examples that were omitted for lack of space.

3 Formalising Parallel Tree Search
The dynamic behaviour of the YewPar framework is modeled
by a novel operational semantics formalising multi-threaded
backtracking search. The semantics presented here gener-
alises the semantics published in Archibald’s thesis [1] by
classifying search types in terms of the monoids they use
to accumulate information, and by providing correctness
proofs.

Section 3.1 specifies search tree generation and traversal.
Section 3.2 introduces the monoids used to accumulate infor-
mation in enumeration, optimisation and decision searches,
and Sections 3.3ff. define a parallel operational semantics for
multi-threaded backtracking search, including pruning (Sec-
tion 3.5) andwork generation (Section 3.6). Section 3.7 proves
correctness of the semantics, i.e. search always terminates
and returns a correct/optimal result.

3.1 Trees
To represent search trees, we formalise trees and tree traver-
sals. Let X be a non-empty alphabet. X ∗ denotes the set of
finite words over X , and ⪯ denotes the prefix order on X ∗.
A tree T is a non-empty finite prefix-closed subset of X ∗.

We call words w ∈ T nodes of T . A node w is a parent of
a node u, and u is a child of w , if there is a ∈ X such that
u = wa. Nodes u and v are siblings if they share the same
parent. The root ofT is the empty word ϵ , and the depth of a
nodew in T is the length of wordw , denoted by |w |.

We assume that a tree T is ordered, that is, equipped with
a partial order ⋖T that linearly orders siblings and does not
order non-siblings; we call ⋖T a sibling order. (A sibling order
is a disjoint union of total orders, each of which linearly
orders the children of one node.) We define the traversal
order ≪T for T as a linear extension of both the prefix order

≺ and the sibling order ⋖T as follows; Proposition 3.1 shows
that this definition is well-formed.

u ≪T v iff


u ≺ v or
∃w,u ′,v ′ ∈ X ∗ ∃a,b ∈ X such that
u = wau ′ and v = wbv ′ andwa ⋖T wb

We will omit the subscript if the treeT is obvious from the
context. Traversing T in ≪ order amounts to a depth-first
traversal that visits the children of each node in sibling order.

Proposition 3.1. ≪ is a linear extension of both ≺ and ⋖.

Proof sketch. We have to show that ≪ is a strict linear order
that extends both ≺ and ⋖. Irreflexivity and totality of≪ are
obvious from the definition. It is also obvious that≪ extends
(i.e. is a superset of) both ≺ and ⋖ since the relations ≺ and
⋖ are disjoint.
It remains to prove transitivity. Assume u ≪ v ≪ w . We

have to show u ≪ w . According to the definition of ≪ there
are four cases to consider.

1. Assume that u ≺ v and v ≺ w .
By transitivity of ≺, we have u ≺ w , that is u ≪ w .

2. Assume there are x ,u ′,v ′ ∈ X ∗ and a,b ∈ X such that
u = xau ′ and v = xbv ′ and xa ⋖ xb. Assume that
v ≺ w , so there isw ′ ∈ X ∗ such thatw = vw ′.
Hence u = xau ′ and w = vw ′ = xbv ′w ′ and xa ⋖ xb,
that is u ≪ w .

3. Assume that u ≺ v , so v = uav ′ for some a ∈ X and
v ′ ∈ X ∗. Assume there arey,v ′′,w ′′ ∈ X ∗ and c,d ∈ X
such thatv = ycv ′′ andw = ydw ′′ and yc ⋖ yd . There
are two cases.
• Case |u | ≤ |y |: Then u ⪯ y because v = uav ′ =

ycv ′′. Hence u ⪯ y ≺ w , that is u ≪ w .
• Case |u | > |y |: Because v = uav ′ = ycv ′′ we have
u = ycu ′ for some u ′ ∈ X ∗. Hence u = ycu ′ and
w = ydw ′′ and yc ⋖ yd , that is u ≪ w .

4. Assume there are x ,u ′,v ′ ∈ X ∗ and a,b ∈ X such that
u = xau ′ andv = xbv ′ and xa ⋖ xb. Assume there are
y,v ′′,w ′′ ∈ X ∗ and c,d ∈ X such that v = ycv ′′ and
w = ydw ′′ and yc ⋖ yd . There are three cases.
• Case |x | = |y |: Then x = y and b = c because
v = xbv ′ = ycv ′′. Hence we have u = xau ′ and

1

Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder

w = ydw ′′ = xdw ′′ and xa ⋖ xb = yc ⋖ yd = xd ,
which implies xa ⋖ xd by transitivity of ⋖. Thus
u ≪ w .

• Case |x | < |y |: Then y = xby ′ for some y ′ ∈ X ∗

because v = xbv ′ = ycv ′′. Hence we have u = xau ′

and w = ydw ′′ = xby ′dw ′′ and xa ⋖ xb, that is
u ≪ w .

• Case |x | > |y |: Then x = ycx ′ for some x ′ ∈ X ∗

because v = xbv ′ = ycv ′′. Hence we have u =
xau ′ = ycx ′au ′ and w = ydw ′′ and yc ⋖ yd , that is
u ≪ w . □

A subset S of X ∗ is a subtree if S has a least element w.r.t.
the prefix order, the root u, and is prefix-closed above the
root, i.e. whenever u ⪯ v ⪯ w andw ∈ S then v ∈ S ; we call
S a subtree rooted at u. If a subtree S is a subset of a tree T
then S inherits T ’s sibling order ⋖T and traversal order ≪T .
Note that every tree is a subtree but not every subtree is a
tree (because the root of a tree must be ϵ).
Let S be a subtree rooted at u, and let v ∈ S . We define

children(S,v) = {va | a ∈ X and va ∈ S} as the set of nodes
in S that are children ofv . We define subtree(S,v), the subtree
of S rooted at v as subtree(S,v) = {w | w ∈ S and v ⪯ w}. If
v , u then the complement S \ subtree(S,v) is a subtree
rooted at u. Note that S \ subtree(S,v) is strictly contained
in S because v < S \ subtree(S,v).
We define succ(S,v) = {w | w ∈ S and v ≪ w} to be the

set of nodes in S that follow v in traversal order. We define
next(S,v) = min≪ succ(S,v) as the node in S that immedi-
ately follows v in traversal order; we write next(S,v) = ⊥ if
no such node exists, i.e. if succ(S,v) = ∅.

We define lowest(S,v) to be the subset of nodes in succ(S,v)
at minimum depth, that is closest to the root of S ; formally:

lowest(S,v) = {w ∈ succ(S,v) | ∀x ∈ succ(S,v) : |x | ≥ |w |}

We define nextLowest(S,v) = min≪ lowest(S,v) as the “first”
(in traversal order) of the minimum depth nodes in succ(S,v);
we write nextLowest(S,v) = ⊥ if there is no such node, i.e. if
succ(S,v) = ∅.

Tree generators. For the purpose of formalising seman-
tics we assume a fully materialised search tree. (In reality,
the search tree is not materialised but generated on demand.)
We call a function д : X ∗ → X ∗ an ordered tree generator if all
images ofд are isograms, i.e. have no repeating letters. We de-
fine Tд , the tree generated by such a д as the smallest subset
of X ∗ that contains ϵ and is closed under д, that is, if u ∈ Tд
and д(u) = a1 . . . an , ai ∈ X , then all uai ∈ Tд . (Clearly, Tд is
a tree iff it is finite.) We equip Tд with the sibling order ⋖Tд
induced by д, defined as uai ⋖Tд uaj iff д(u) = a1 . . . an and
i < j. This defines a total order on siblings because images
of д are isograms.

3.2 Search types
YewPar supports enumeration, optimisation and decision
searches. All three search types can be characterised in terms
of a commutative monoid M for accumulating information
and an objective function h for mapping search tree nodes
into the monoid.

Enumeration. search traverses the entire search tree and
gathers information by summing up the value of the ob-
jective function. Formally, such a search is defined by a
commutative monoid ⟨M,+, 0⟩ and an objective function
h : X ∗ → M , and searching an initial tree S0 amounts to
computing the sum

∑
{h(v) | v ∈ S0}.

Examples. A simple enumeration search example counts
the nodes of a search tree. The monoid M is the natural
numbers with addition, and the objective function h is the
constant function h(v) = 1. Counting the nodes at a given
depth d requires the same monoidM but a different objective
function h, where h(v) = 1 if the depth of v is d , i.e. |v | = d ,
and h(v) = 0 otherwise.
The monoid for collecting the set of all nodes of a tree is

⟨X ∗,∪, ∅⟩ and the objective function h maps nodes to single-
ton sets h(v) = {v}. In this case, the sum

∑
{h(v) | v ∈ S}

equals S .

Optimisation. search computes the maximal value of the
objective function while traversing the search tree. To this
end, the commutative monoid ⟨M,+, 0⟩ must also be a to-
tal order ⟨M,⊑⟩ with least element 0. That is, + must be
idempotent (so ⟨M,+, 0⟩ is a semilattice) and the induced
order ⊑ must be total (so the operations + and max coin-
cide). Consequently the sum

∑
{h(v) | v ∈ S0} (computed by

enumeration search) is the same as max{h(v) | v ∈ S0}.
Thus, optimisation search can be reduced to enumeration.

However, enumeration accumulates the maximal value of
the objective function but cannot provide a witness for that
value. Computing a witness requires the tracking of incum-
bents, and also provides opportunities for pruning the search
tree (Section 3.5). Note that there may be many witnesses;
optimisation search may pick one nondeterministically.

Example. A simple optimisation search computes the depth
of a tree. The monoidM is the natural numbers with maxi-
mum, which induces the usual total order, and the objective
function h maps each node to its depth, i.e. h(v) = |v |.

Decision. search, like optimisation search, computes the
maximal value of the objective function while traversing the
search tree. (Like optimisation search, decision search typi-
cally returns a nondeterministically chosen node witnessing
that maximum.) However, decision search requires the total
order ⟨M,⊑⟩ to be bounded, and it will short-circuit and
stop as soon as the objective function reaches the greatest
element.

Example. A simple decision search decides whether a tree
is at least k levels deep. The bounded total order is the set

2

YewPar — Operational Semantics Supplement

{0, . . . ,k} with the usual order, i.e. k is the greatest element.
The objective function h maps each node to its depth, cut off
at level k , i.e. h(v) = min{|v |,k}.

3.3 Configurations
The semantics captures the current state of a parallel search
in a configuration of the form ⟨σ , Tasks,θ1, . . . ,θn⟩, where
n ≥ 1 is the fixed number of parallel threads. The compo-
nents of a configuration are:

• θi is the state of the ith thread. It is either ⊥ to denote
an idle thread, or ⟨S,v⟩k to denote an active thread
that is currently executing task S , that is, searching
subtree S in traversal order. The node currently being
explored is v , and the superscript k records how often
the search of S has backtracked; we may omit k when
counting backtracks does not matter.

• Tasks is a queue of pending tasks, that is, subtrees yet
to be searched. We use list notation, so [] is an empty
queue, [S] is a singleton queue, S :Tasks is a queue with
S at the head, and Tasks:S is a queue with S at the tail.

• σ is the current global knowledge, which is either of
the form ⟨x⟩ or {u}, depending on the search type
(Section 3.2). For enumeration searches, the accumu-
lator ⟨x⟩ is an element of a commutative monoid that
sums up the current knowledge. For optimisation and
decision searches, the incumbent {u} is a search tree
node that currently maximises the objective function
h.

Search begins with all threads idle, a singleton task queue
and global knowledge being either the root node incumbent
or the zero accumulator. That is, an initial configuration takes
the form ⟨σ0, [S0],⊥, . . . ,⊥⟩, where S0 is the entire search
tree and σ0 is of the form {ϵ} or ⟨0⟩. Note that all tasks in
later configurations (Section 3.4) are subtrees of S0 and thus
inherit the traversal order of S0.

Search ends when the task queue is empty and all threads
idle, i.e. final configurations take the form ⟨σ , [],⊥, . . . ,⊥⟩,
where σ is a search result.

3.4 Reduction rules
Figure 2 lists the reduction rules of the multi-threaded se-
mantics. The rules are divided into four categories and define
reduction relations→T

i ,→
N
i ,→P

i and→S
i for tree traversal,

node processing, pruning and spawning, respectively. The
subscript i indicates the active thread performing a reduction
step. The per-thread and overall reduction relations →i and
→ are defined as follows.

→i = (→T
i ◦→N

i) ∪→P
i ∪→S

i

→ =→1 ∪ · · · ∪→n

Every→ reduction is a per-thread reduction for some thread
i , which is either a spawn reduction, a prune reduction, or a

traversal reduction followed immediately by a node process-
ing reduction.
Prune and spawn reduction rules are explained in subse-

quent sections. The traversal rules encode standard back-
tracking, searching a subtree S in traversal order, starting
at the root of S (schedule), expanding the current branch
(expand), backtracking to another branch (backtrack), and
terminating once S is explored (terminate). The search type
determines which node processing rules are applicable. Enu-
meration searches accumulate the value of the objective
function using the monoid addition + (accumulate). Opti-
misation and decision searches update the incumbent after
comparing its objective value to the current node using the
total order ⊑ (strengthen/skip). The (noop) rule prevents
node processing getting stuck after (terminate).

We observe that → reductions do not get stuck except on
final configurations because every non-final configuration
can make progress with at least one traversal rule followed
by a node processing rule. In particular, a sequence of reduc-
tions starting with an initial configuration and using only
traversal and node processing rules (thereby corresponding
to a single-threaded execution without pruning) cannot get
stuck. Moreover, as such a reduction sequence explores a fi-
nite search tree node by node in traversal order, the sequence
will eventually terminate in a final configuration.

3.5 Pruning
Optimisation and decision searches admit pruning the search
tree, i.e. removing subtrees that can never improve the cur-
rent incumbent. Semantically, this is reflected by the (prune)
rule. Note that the rule removes the subtree rooted at v but
not v itself. This is a technicality owing to the fact that node
v is needed to determine the next node in traversal order.

What to prune is decided by search-specific heuristics. For
the purpose of the semantics, the heuristics are abstracted to
a binary pruning relation ▷ on search tree nodes; write u ▷ v
to express that u justifies pruning v . The pruning relation
must satisfy the following admissibility conditions w.r.t. the
objective function h and the total order ⟨M,⊑⟩.

1. For all u and v , if u ▷ v then h(u) ⊒ h(v).
2. For allu ′,u andv , if h(u ′) ⊒ h(u) andu ▷ v thenu ′ ▷ v .
3. For all u, v and v ′, if u ▷ v and v ⪯ v ′ then u ▷ v ′.

Condition 1 states correctness of pruning w.r.t. maximising
the objective function: if u justifies pruningv then h(u) dom-
inates h(v). Condition 2 allows strengthening of incumbents:
if u justifies pruning v then any stronger incumbent u ′ also
will. Condition 3 allows pruning entire subtrees: if u justifies
pruning v then any descendent of v can also be pruned.

It is reasonable to also demand that no node justifies prun-
ing itself, i.e. that ▷ is irreflexive. This leads to Proposition 3.2
observing that ▷ partially orders search tree nodes. In fact,
the pruning relation ▷ can be thought of as a strict partial

3

Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder

Tree traversal rules

(schedulei)
v = root of S

⟨σ , S :Tasks, . . . , ⊥, . . .⟩ →T
i ⟨σ , Tasks, . . . , ⟨S, v ⟩0, . . .⟩

(expandi)
v ′ = next(S, v) v ′ , ⊥ v ⪯ v ′

⟨σ , Tasks, . . . , ⟨S, v ⟩k , . . .⟩ →T
i ⟨σ , Tasks, . . . , ⟨S, v ′⟩k , . . .⟩

(backtracki)
v ′ = next(S, v) v ′ , ⊥ v ̸⪯ v ′

⟨σ , Tasks, . . . , ⟨S, v ⟩k , . . .⟩ →T
i ⟨σ , Tasks, . . . , ⟨S, v ′⟩k+1, . . .⟩

(terminatei)
next(S, v) = ⊥

⟨σ , Tasks, . . . , ⟨S, v ⟩k , . . .⟩ →T
i ⟨σ , Tasks, . . . , ⊥, . . .⟩

Node processing rules

(accumulatei)
⟨⟨x ⟩, Tasks, . . . , ⟨S, v ⟩, . . .⟩ →N

i ⟨⟨x+h(v)⟩, Tasks, . . . , ⟨S, v ⟩, . . .⟩

(strengtheni)
h(v) ⊐ h(u)

⟨{u }, Tasks, . . . , ⟨S, v ⟩, . . .⟩ →N
i ⟨{v }, Tasks, . . . , ⟨S, v ⟩, . . .⟩

(skipi)
h(v) ⊑ h(u)

⟨{u }, Tasks, . . . , ⟨S, v ⟩, . . .⟩ →N
i ⟨{u }, Tasks, . . . , ⟨S, v ⟩, . . .⟩

(noopi)
⟨σ , Tasks, . . . , ⊥, . . .⟩ →N

i ⟨σ , Tasks, . . . , ⊥, . . .⟩

Prune rules

(prunei)
u ▷ v S ′ = subtree(S, v) \ {v } S ′ , ∅

⟨{u }, Tasks, . . . , ⟨S, v ⟩, . . .⟩ →P
i ⟨{u }, Tasks, . . . , ⟨S \ S ′, v ⟩, . . .⟩

(shortcircuiti)
h(u) is greatest element

⟨{u }, Tasks, . . . , ⟨S, v ⟩, . . .⟩ →P
i ⟨{u }, [], ⊥, . . . , ⊥⟩

Spawn rules

(spawni)
u ∈ S v ≪ u Su = subtree(S, u)

⟨σ , Tasks, . . . , ⟨S, v ⟩, . . .⟩ →S
i ⟨σ , Tasks:Su , . . . , ⟨S \ Su , v ⟩, . . .⟩

(spawn-depthi)
|v | < dcutoff {u1, . . . , um } = children(S, v) , ∅ u1 ≪ · · · ≪ um S1 = subtree(S, u1) . . . Sm = subtree(S, um)

⟨σ , Tasks, . . . , ⟨S, v ⟩, . . .⟩ →S
i ⟨σ , Tasks:S1: . . . :Sm, . . . , ⟨S \ S1 \ · · · \ Sm, v ⟩, . . .⟩

(spawn-budgeti)
k ≥ kbudget {u1, . . . , um } = lowest(S, v) , ∅ u1 ≪ · · · ≪ um S1 = subtree(S, u1) . . . Sm = subtree(S, um)

⟨σ , Tasks, . . . , ⟨S, v ⟩k , . . .⟩ →S
i ⟨σ , Tasks:S1: . . . :Sm, . . . , ⟨S \ S1 \ · · · \ Sm, v ⟩0, . . .⟩

(spawn-stacki)
u = nextLowest(S, v) , ⊥ Su = subtree(S, u)

⟨σ , [], . . . , ⟨S, v ⟩, . . .⟩ →S
i ⟨σ , [Su], . . . , ⟨S \ Su , v ⟩, . . .⟩

Figure 2. Reduction rules of the operational semantics.

order that extends the pre-order induced by the objective
function h.

Proposition 3.2. Any irreflexive binary relation ▷ onX ∗ that
satisfies the admissibility conditions is a strict partial order.

Proof sketch. It suffices to show that any irreflexive ▷ is
transitive. Assume u ▷ v ▷ w . By admissibility condition (1),
the first part of the chain implies h(u) ⊒ h(v). This fact and
the second part of the chain imply u ▷ w by admissibility
condition (2). □

Example: Maximum clique search. Let G = ⟨V ,E⟩ be
an undirected graph. Given a vertex u ∈ V , we denote its set
of adjacent vertices by E(u).
A maximum clique search finds a largest set of pairwise

adjacent vertices. We will define the search space for maxi-
mum clique search (be defining an ordered tree generator),
the objective function, and a simple pruning relation.

Amaximum clique search inG can be performed by search-
ing a tree over the alphabet X = V × 2V whose nodesw at
depth k are words of the form ⟨v1,V1⟩ . . . ⟨vk ,Vk ⟩ such that
{v1, . . . ,vk } is a k-clique in G and Vk is a set of candidate
vertices each of which extends the k-clique to a (k+1)-clique.
Formally, we define the ordered tree generator д : X ∗ → X ∗

by д(⟨v1,V1⟩ . . . ⟨vk ,Vk ⟩) = ⟨u1,U1⟩ . . . ⟨un ,Un⟩ such that
• the ui enumerate the candidate set Vk , and

• Ui = (Vk \ {u1, . . . ,ui−1}) ∩ E(ui)

where we assume V0 = V in order to define д for the empty
word, i.e. when k = 0. Typically, the ⟨ui ,Ui ⟩ are ordered such
that the size of Ui decreases as i increases; this order sup-
ports a more efficient implementation of pruning, allowing
to prune all nodes to “to the right” when pruning the current
node is justified.
A maximum clique search is an optimisation search. Its

total order ⟨M,⊑⟩ are the natural numbers with their usual
order, and its objective function h maps search tree nodesw
to their depth |w |.

A simple heuristic prunes all nodes where the size of the
current clique plus the size of the candidate set does not
exceed the size of the incumbent clique.1 Formally, u ▷ w
if and only if u , w and |u | ≥ |w | + #Vk where w =

⟨v1,V1⟩ . . . ⟨vk ,Vk ⟩ and the # operator returns the size of
a set. The ▷ relation is clearly irreflexive and satisfies admis-
sibility conditions 1 and 2. To establish condition 3 note that
if w ′ = ⟨v1,V1⟩ . . . ⟨vk ,Vk ⟩⟨vk+1,Vk+1⟩ is a child of w then
|w |+ #Vk = k + #Vk ≥ (k + 1)+ #Vk+1 = |w ′ |+ #Vk+1 because
#Vk > #Vk+1. Hence by induction, all descendants ofw will
satisfy the inequality defining the pruning relation ▷.

1Stronger pruning can be achieved by replacing the size of the candidate set
with an upper bound estimate of the largest clique amongst the candidates;
such estimates can be found by greedy graph colouring algorithms.

4

YewPar — Operational Semantics Supplement

3.6 Spawning
The semantics includes a (spawn) rule to model space-split-
ting parallel search. A (spawn) reduction hives off some
subtree Su of the current thread ⟨S,v⟩ into a new task, which
is added to the task queue (and later scheduled by another
thread). Su must be unexplored, i.e. its root u is visited after
the current node v in traversal order ≪.
The search coordination of YewPar skeletons implement

more complex space-splitting behaviours, selecting specific
groups of subtrees to spawn as tasks, in a specific order. We
model these coordination behaviours as derived spawn rules.
Semantically, these rules are redundant — their reductions
steps can be translated into (spawn) reduction sequences.
However, these rules allow to faithfully model the coordina-
tion behaviour of a particular YewPar skeleton by restricting
spawn reductions to use only the appropriate derived spawn
rule.

The (spawn-depth) rule. models Depth-Bounded search
coordination. The rule fires if the depth of the current nodev
is less than thedcutoff parameter. The rule spawns all subtrees
of S rooted at children of v and queues them in traversal
order. In effect, the rule causes eager spawning of the top
dcutoff levels of the search tree, queued in heuristic search
order.

The (spawn-budget) rule. models Budget search coordi-
nation. The rule fires if the backtrack counter k of the current
thread exceeds the kbudget parameter. The rule spawns all un-
explored subtrees of the current thread ⟨S,v⟩ at lowest depth,
i.e. closest to the root of S . New tasks are queued in traver-
sal order, and the backtrack counter of the current thread
is reset to 0. In effect, the rule periodically generates new
tasks from threads that contain significant amounts of work
(since search has not completed within the backtrack budget).
Spawning at lowest depth (i.e. closest to the root) prioritises
large tasks, and queuing tasks in traversal order respects the
heuristic search order.

The (spawn-stack) rule. models Stack-Stealing search
coordination. It differs from the other rules in that it only
fires when the task queue is empty, and only spawns one
new task. That task is the first (in traversal order) of the un-
explored lowest-depth subtrees of the current thread ⟨S,v⟩.
The (spawn-stack) rule is designed to split the search space
on demand, generating a single new task to be stolen by an
idle thread, and prioritising large tasks close to the root.

The YewPar implementation of Stack-Stealing lets a thief
steal directly from the victim. Semantically, this behaviour
corresponds to a (spawn-stacki) reduction followed by a
(schedulej) reduction, modelling idle thread j stealing from
victim thread i , with the task queue acting as a transit buffer
for the stolen task.

3.7 Correctness
The semantics is correct if every sequence of reductions start-
ing at a given search tree computes the same sum or maxi-
mum of the objective function, independent of the particular
reduction sequence. For enumeration searches, correctness
amounts to termination and confluence of the reduction
relation, but optimisation and decision searches may nonde-
terministically return any optimal witness, hence the reduc-
tion relation cannot be confluent in general. The following
theorems formalise this statement of correctness.

Theorem 3.3. Let S0 be a search tree for an enumeration
search. If ⟨⟨0⟩, [S0],⊥, . . . ,⊥⟩ →∗ ⟨⟨x⟩, [],⊥, . . . ,⊥⟩ then
x =

∑
{h(v) | v ∈ S0}.

Proof sketch. The correctness argument boils down to show-
ing that every node in S0 is processed by the (accumulate)
rule exactly once. In the absence of spawn reductions, this
property follows from the strict alternation between traver-
sal→T

i and node processing→N
i reductions, and from the

fact that traversal visits all nodes of a subtree S in traversal
order ≪. Thus, the (terminate) rule fires when all nodes in S
have been processed exactly once.
To argue for the correctness of enumeration in the pres-

ence of spawning, we note that spawn reductions do not
change the total set of nodes in the configuration. To be
precise, we define a function N mapping configurations to
the set of all their nodes.

N(⟨σ , Tasks,θ1, . . . ,θn⟩) = N(Tasks) ∪ N(θ1) ∪ · · · ∪ N(θn)

N(S :Tasks) = S ∪ N(Tasks)

N([]) = ∅

N(⟨S,v⟩) = S

N(⊥) = ∅

It is easy to verify that all rules except (terminate) keep N

invariant, and all nodes removed by (terminate) have been
processed exactly once by the (accumulate) rule as outlined
above. □

Theorem3.4. Let S0 be a search tree for an optimisation or de-
cision search. If ⟨{ϵ}, [S0],⊥, . . . ,⊥⟩ →∗ ⟨{û}, [],⊥, . . . ,⊥⟩
then h(û) = max{h(v) | v ∈ S0}.

Proof sketch. Correctness is easy to show if the (shortcircuit)
rule fires. It can only fire in the very last step and only if h(û)
is the greatest element. Hence h(û) = max{h(v) | v ∈ S0}
because the final incumbent û is a node in S0.

It remains to show correctness for reductions that do not
end in a (shortcircuit) step. The (strengthen) rule is the only
one that updates the incumbent, and it only fires to increase
the objective value of the imcumbent. Thus an induction on
the length of reductions shows that the h-value of incum-
bents increases monotonically over time, hence h(û) ⊒ h(u),
where u is the incumbent in some configuration along the

5

Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder

reduction. We will argue that nodes removed by rules (ter-
minate) and (prune) cannot beat the current incumbent u,
let alone the final incumbent û.
For the correctness of (terminate) we observe that, as in

the proof of Theorem 3.3, traversal reductions visit the nodes
of a subtree in traversal order≪. So when (terminate) fires in
configuration ⟨{u}, Tasks, . . . , ⟨S,v⟩, . . .⟩ then next(S,v) =
⊥, i.e. v is the last node in ≪ order in S . This means that all
nodes in S have been visited, and hence have been processed
either by the (strengthen) or the (skip) rule. By induction
on the number of node processing reductions, we can show
that h(û) ⊒ h(u) ⊒ max{h(v) | v ∈ S}.

To show correctness of the (prune) rule, assume it fires in
configuration ⟨{u}, Tasks, . . . , ⟨S,v⟩, . . .⟩, that is u ▷ v holds
and S ′ = subtree(S,v) \ {v}. The (prune) rule removes only
nodes in S ′, i.e. nodes v ′ which are strict descendants of v .
Hence we have u ▷ v and v ≺ v ′ which implies u ▷ v ′ and
h(u) ⊒ h(v ′) by admissibility conditions 3 and 1, respectively.
Thus we have h(û) ⊒ h(u) ⊒ max{h(v ′) | v ′ ∈ S ′}.

Since every node in the entire search tree S0 is eventually
removed by (terminate) or (prune), the arguments above are
sufficient to show that h(û) is an upper bound on the h-value
of any node v ∈ S0. Hence h(û) = max{h(v) | v ∈ S0}
because the final incumbent û is also a node in S0. □

Theorem 3.5. The reduction relation → is terminating.

Proof sketch. It suffices to map configurations into a measure
(i.e. a well-founded partially ordered set) such that each→

reduction step strictly decreases the measure.
We choose as measure finite multisets of natural numbers,

ordered by the well-founded multiset extension >mul of the
usual order on natural numbers, as defined by Dershowitz
andManna [3]. That is,M >mul M

′ if multisetM′ is obtained
from multiset M by removing one or more numbers from
M and then inserting zero or more numbers such that all
inserted numbers are strictly smaller than at least one of the
removed numbers.
We define a measuring function M mapping configura-

tions to multisets of task and thread sizes. More precisely,
M returns a multiset containing the number of nodes of
each task and the number of as-yet-unexplored nodes of
each thread. In the formal definition below, ∅ denotes the
empty multiset, ⊎ denotes the sum of two multisets, and the
operator returns the size of a finite set.

M(⟨σ , Tasks,θ1, . . . ,θn⟩) =M(Tasks) ⊎M(θ1) ⊎ · · · ⊎M(θn)

M(S :Tasks) = #S ⊎M(Tasks)

M([]) = ∅

M(⟨S,v⟩) = #{u ∈ S | v ≪ u}

M(⊥) = ∅

It remains to show that every → reduction step decreases
the measure.

• Tree traversal and node processing steps. Rule (sched-
ule) removes a task and adds a thread; the measure
decreases because the thread size is less than the task
size as the root node v is already explored. Rules (ex-
pand) and (backtrack) decrease the measure because
they decrease the size of the current thread by one.
The (terminate) rule decreases the measure because it
removes a thread.
By definition of the per-thread reduction relation→i ,
every tree traversal step must be followed by exactly
one node processing step. As the rules (accumulate),
(strengthen), (skip) and (noop) do not change the mea-
sure, node processing steps do not affect termination.

• Pruning steps. The (prune) rule decreases the measure
because it removes as-yet-unexplored nodes from the
current thread. The (shortcircuit) rule removes all tasks
and all threads, decreasing the measure to the empty
multiset.

• Spawning steps. The (spawn) rule removes thread ⟨S,v⟩
and adds in its place thread ⟨S \ Su ,v⟩ and task Su . This
reduces the measure because both the sizes of task Su
and of thread ⟨S \ Su ,v⟩ are strictly smaller than the
size of thread ⟨S,v⟩, thanks to the fact that u is an as-
yet-unexplored node of ⟨S,v⟩. Similar arguments show
that the other spawn rules also decrease the measure.

It follows that → must be terminating, as otherwise there
would be an infinite descending chain of measures, in con-
tradiction to the well-foundedness of >mul. □

References
[1] Blair Archibald. 2018. Skeletons for Exact Combinatorial Search at Scale.

Ph.D. Dissertation. University of Glasgow. http://theses.gla.ac.uk/id/
eprint/31000

[2] Blair Archibald, Patrick Maier, Robert Stewart, and Phil Trinder. 2020.
YewPar: Skeletons for Exact Combinatorial Search. In Proceedings of
the 25th ACM SIGPLAN Annual Symposium on Principles and Practice
of Parallel Programming, PPoPP 2020, San Diego, CA, USA, February
22-26, 2020. ACM, New York, NY, USA. https://doi.org/10.1145/3332466.
3374537

[3] Nachum Dershowitz and Zohar Manna. 1979. Proving Termination
with Multiset Orderings. Comm. ACM 22, 8 (1979), 465–476. https:
//doi.org/10.1145/359138.359142

6

http://theses.gla.ac.uk/id/eprint/31000
http://theses.gla.ac.uk/id/eprint/31000
https://doi.org/10.1145/3332466.3374537
https://doi.org/10.1145/3332466.3374537
https://doi.org/10.1145/359138.359142
https://doi.org/10.1145/359138.359142

	Abstract
	3 Formalising Parallel Tree Search
	3.1 Trees
	3.2 Search types
	3.3 Configurations
	3.4 Reduction rules
	3.5 Pruning
	3.6 Spawning
	3.7 Correctness

	References

