
Safety Guarantees from Explicit Resource Management

David Aspinall, Patrick Maier, and Ian Stark

Laboratory for Foundations of Computer Science
School of Informatics, The University of Edinburgh, Scotland
{David.Aspinall,Patrick.Maier,Ian.Stark}@ed.ac.uk

Abstract. We present a language and a program analysis that certifies the safe
use of flexible resource management idioms, in particular advance reservation
or “block booking” of costly resources. This builds on previous work with
resource managers that carry out runtime safety checks, by showing how to
assist these with compile-time checks. We give a small ANF-style language
with explicit resource managers, and introduce a type and effect system that
captures their runtime behaviour. In this setting, we identify a notion of dynamic
safety for running code, and show that dynamically safe code may be executed
without runtime checks. We show a similar static safety property for type-safe
code, and prove that static safety implies dynamic safety. The consequence is
that typechecked code can be executed without runtime instrumentation, and is
guaranteed to make only appropriate use of resources.

1 Introduction

Safe management of resources is a crucial aspect of software correctness. Bad resource
management impacts reliability and security. The more expensive a resource or the
more complex its usage pattern, the more important is good management. For example,
a media player could crash badly, leaving the hardware in a messy state, if its mem-
ory management was governed by the overly optimistic assumption that every request
for memory will succeed. Malware on a mobile phone can defraud an unaware user
by maliciously sending text messages to premium rate numbers, if there is no effec-
tive management of network access [12]. On current mobile platforms such as Java
MIDP 2.0, management of network access is commonly left to the user, but users can
easily be deceived by social engineering attacks.

Unfortunately, current programming languages do not provide special mechanisms
for resource management. Therefore, programmers can only hope that their applications
are resource safe, or use necessarily imprecise analyses to try to show this. For
example, there are type systems that over-approximate (hopefully tightly) the memory
requirements of an application [6], and static analyses that over-approximate the number
of text messages being sent by an application [7].

These approaches may fail if a dynamic set of resources must be managed, as with
bulk messaging where the user wants to send a text message to a number of recipients
selected from an address book. Because of the cost of sending text messages, the user
must authorise each recipient (i. e., their phone number) explicitly. This could happen
individually, just before each message is being sent, or collectively, before sending the

first message. Collective authorisation, or block booking of resources, is preferable but
requires detailed resource management, keeping track of the (multi-)set of authorised
resources – in this case the permitted phone numbers.

In this paper, we present a language-based mechanism that provides programmers
with a safe way to control complex resource usage patterns using a notion of resource
manager. Figure 1 shows the code of a bulk messaging application using resource
managers in our intermediate-level functional programming language. The language
and functions used will be explained in full detail in Section 2; for now, we just give
an outline of operation. The function send bulk calls send msgs to send the message
msg to the phone numbers stored in the array nums. Along with these two arguments
send msgs takes a resource manager m’ which encapsulates the resources that have been
authorised (during the call to enable) to send the messages. For each phone number in
nums, send msgs calls the wrapper function send msg, passing along a resource manager.
Prior to calling the primitive send function prim send msg, the wrapper checks (using
assertAtLeast) whether its input manager m contains the resource required to send a
message to num; if the resource is not present, the program will abort with a runtime
error, otherwise send msg removes the resource from the manager (using split), and
returns the modified manager as m’.

The bulk messaging application is (dynamically) resource safe by construction, as
the resource managers will trap attempts to abuse resources. The resource manager
abstraction works in tandem with a static analysis, so that programs which can be
proved resource safe statically can be treated more efficiently at runtime by removing
the dynamic accounting code. In Section 3.2, we prove resource safety statically for the
bulk messaging application.

Our contribution is two-fold. In Section 2, we develop a functional programming
language for coding complex resource idioms, such as block booking resources in
the bulk messaging application. The language is essentially a first-order functional
language in administrative normal form (ANF) [10] with a novel type system serving
two purposes. First, the type system names input and output parameters of functions
and avoids shadowing of previously bound names, thus admitting to view functions as
relations (expressed by logical formulae) between their input and output parameters.
Second, the language includes a special, linear type for resource managers, where
linearity serves as a means of introducing stateful objects into an otherwise pure
functional language. Resource managers track what resources a program is allowed
to use, and the operational semantics causes the program to go wrong (i. e., abort with
a runtime error) as soon as it attempts to abuse resources. This induces a notion of
dynamic resource safety, which holds if a program never attempts to abuse resources. In
this case, accounting is not necessary. As our first result, we show that erasing resource
managers does not alter the semantics of dynamically resource safe programs.

Decisions about which resources programs may use are typically guided by resource
policies. From the point of view of a program, a policy is simply an oracle determining
what resources to grant; and we abstract this as a non-deterministic operation on
resource managers. This covers many concrete policy mechanisms, both static (e. g.,
Java-style policy files) or dynamic (e. g., user interaction); see [3] for more on the
interaction of resource managers and policies.

send bulk ::
λ let (r) = res from nums (nums) in

let (m) = init () in
let (m’,r’) = enable (m,r) in
let (n) = size (r’) in
if n then let () = consume (m’) in

ret ()
else let (m”) = send msgs (msg,nums,m’) in

let (m’”) = assertEmpty (m”) in
let () = consume (m’”) in
ret () :

(msg:str, nums:str[]) → ()

res from nums ::
λ let (i) = length (nums) in

let (r) = empty () in
let (r’) = res from nums’ (nums,r,i) in
ret (r’) :

(nums:str[]) → (r’:res{})

res from nums’ ::
λ if i then let (i’) = sub (i,1) in

let (num) = read (nums,i’) in
let (c) = fromstr (num) in
let (r c) = single (c,1) in
let (r”) = sum (r, r c) in
let (r’) = res from nums’ (nums,r”,i’) in
ret (r’)

else let (r’) = id (r) in
ret (r’) :

(nums:str[], r:res{}, i:int) → (r’:res{})

send msgs ::
λ let (i) = length (nums) in

let (m’) = send msgs’ (msg,nums,m,i) in
ret (m’) :

(msg:str, nums:str[], m:mgr) → (m’:mgr)

send msgs’ ::
λ if i then let (i’) = sub (i,1) in

let (num) = read (nums,i’) in
let (m”) = send msg (msg,num,m) in
let (m’) = send msgs’ (msg,nums,m”,i’) in
ret (m’)

else let (m’) = id (m) in
ret (m’) :

(msg:str, nums:str[], m:mgr, i:int) → (m’:mgr)

send msg ::
λ let (c) = fromstr (num) in

let (r) = single (c,1) in
let (m’,m r) = split (m,r) in
let (m r’) = assertAtLeast (m r,r) in
let () = prim send msg (msg,num) in
let () = consume (m r’) in
ret (m’) :

(msg:str, num:str, m:mgr) → (m’:mgr)

prim send msg ::
λ . . . :
(msg:str, num:str) → ()

Fig. 1. Bulk messaging application.

In Section 3 we present our second contribution, an effect type system for deriving
relational approximations of functions. These approximations are expressed as pairs of
constraints in a first-order logic, specifying a pre- and postcondition (or rather, state
transforming action) of a given function, similar to Hoare type theory [11]; note that
the use of logical formulae as effects is the rationale behind choosing a programming
language where functions have named input and output parameters. Typability of
functions in the effect type system induces a notion of static resource safety. As our
second result, we prove a soundness theorem stating that static implies dynamic resource
safety. As a corollary, we show that resource managers can always be erased from
statically resource safe programs. Proofs have been omitted due to lack of space.

2 A Programming Language for Resource Management

We introduce a simple programming language with built-in constructs for handling
resource managers. The language is essentially a simply-typed first-order functional
language in ANF [10], with the additional features that functions take and return tuples
of values, function types name input and output arguments, scoping avoids shadowing,
and the type of resource managers enforces a linearity restriction on its values. The first
three of these features are related to giving the language a relational appeal: for the
purpose of specifying and reasoning logically, functions ought to be viewed as relations

〈fundecl〉 ::= 〈prodtype〉 → 〈prodtype〉 (built-in function)
| λ〈exp〉 : 〈prodtype〉 → 〈prodtype〉 (λ-abstraction)

〈exp〉 ::= if 〈val〉 then 〈exp〉 else 〈exp〉 (conditional)
| let (〈var〉,. . .,〈var〉) = 〈fun〉 (〈val〉,. . .,〈val〉) in 〈exp〉 (function call)
| ret (〈var〉,. . .,〈var〉) (return)

〈val〉 ::= 〈const〉 | 〈var〉
〈prodtype〉 ::= (〈var〉:〈type〉,. . .,〈var〉:〈type〉)

〈type〉 ::= 〈datatype〉 | mgr

〈datatype〉 ::= unit | int | str | res | res{} | 〈datatype〉[]

Fig. 2. BNF grammar.

between input and output parameters. The fourth feature is a means of introducing state
into a functional language.

The choice for such a language has been inspired by Grail [2], another first-order
functional language in ANF. Moreover, Appel [1] argues that ANF, the intermediate
language used by many compilers for functional languages, and SSA, the intermediate
representation used by most compilers for imperative languages, are essentially the same
thing. Therefore, our language should capture the essence of first-order programming
languages, whether functional or imperative.

2.1 Syntax and Static Semantics

Grammar. Figure 2 shows the grammar of the programming language. The nontermi-
nals 〈fun〉, 〈var〉 and 〈const〉 represent functions, variables and constants, respectively.
A program Π is a partial function from 〈fun〉 to 〈fundecl〉, i. e., Π maps functions to
function declarations, which are either type declarations for built-in functions or λ-
abstractions (with type annotations serving as variable binders). We use the notation
Π(f) = [λ . . .]σ → σ′ if we are only interested in the type of f , regardless whether f
is built-in or a λ-abstraction. By dom(Π), we denote the domain of Π . We denote the
restriction of Π to the built-in functions by Π0, i. e., Π(f) is a λ-abstraction if and only
if f ∈ dom(Π) \ dom(Π0). We assume that Π0 declares exactly the functions that are
shown in Figure 4.

The grammar of expressions e ∈ 〈exp〉 and values v ∈ 〈val〉 is quite standard for
a first-order functional language in ANF. Throughout, functions operate on tuples of
values, which is reflected by the syntax for function call and return. The sets of free
and bound (by the let-construct) variables of an expression e, denoted by free(e) and
bound(e) respectively, are defined in the usual way.

Datatypes τ ∈ 〈datatype〉 comprise the unit type, integers, strings, resources,
multisets of resources, and arrays. A type τ ∈ 〈type〉 is either a datatype or the
special type of resource managers, denoted mgr. See Section 2.2 for the interpretations
of types. A tuple (x1:τ1,. . .,xn:τn) ∈ 〈prodtype〉 is a product type if the variables
x1, . . . , xn are pairwise distinct. Product types appear to associate types to variables,

but they really associate variables and types to positions in tuples. A pair of product
types of the form (x1:τ1,. . .,xm:τm) → (x′1:τ

′
1,. . .,x

′
n:τ ′n) forms a function type if the

variable sets {x1, . . . , xm} and {x′1, . . . , x′n} are disjoint. We call the product types to
the left and right of the arrow argument type and return type, respectively. As an example
consider the type of the function send msg from Figure 1. It states that send msg takes
two strings and a resource manager and returns a resource manager, while at the same
time binding the names of the formal input parameters msg, num and m and announcing
that the formal output parameter will be m’.

Static typing. A type environment Γ is a functional association list of type declarations
of the form x:τ , where x is a variable and τ a type. Being functional implies that
whenever Γ contains two type declarations x:τ and x:τ ′ we must have τ = τ ′.
Therefore, Γ can be seen as a partial function mapping variables to types. By dom(Γ),
we denote the domain of this partial function, and for x ∈ dom(Γ), we may write Γ (x)
for the unique type which Γ associates to x. We write type environments as comma-
separated lists, the empty list being denoted by ∅. The restriction Γ |X of Γ to a set of
variablesX , is defined in the usual way and induces a partial order� type environments,
where Γ ′ � Γ iff Γ ′|dom(Γ) = Γ .

We call a type environment Γ = x1:τ1, . . . , xn:τn linear if the variables x1, . . . , xn

are pairwise distinct. Note that such a linear type environment Γ may be viewed as
a product type σ = (x1:τ1,. . .,xn:τn), and vice versa. Occasionally, we will write
Π(f) = [λ . . .]Γ → ∆ to emphasise that argument and return types of the function f
are to be viewed as linear type environments.

Figure 3 shows the typing rules for the programming language. The judgement
C;Γ ` v : τ expresses that the value v has type τ in type environment Γ and context
C, where a context is a set of variables (generally the set of variables occurring in
some super-expression of v). Note that (T-const) restricts program constants to the unit
value, integers and strings, which are the interpretations of the types unit, int and str,
respectively (see Section 2.2). All other types are abstract in the sense that their values
can only be accessed through built-in functions.

The judgement C;Γ `Π e : σ means that the expression e has product type σ in
type environment Γ , context C and program Π . If the program is understood we may
write C;Γ ` e : σ. There are three things worth noting about expression typing. First,
although the type system is linear, weakening and contraction are available to all types
but mgr, rendering mgr the sole linear type of the language. Second, the side condition
of (T-let) ensures that let-bound variables do not shadow any variables in the context
(which is generally a superset of the set of variables occurring in the let-expression).
Third, the rule (T-ret) matches the variables in the return expression to the variables in
the product type, thus enforcing that an expression uniformly uses the same variables
to return its results (even though these return variables may be let-bound in different
branches of the expression). Note that (T-ret) is the only rule to exploit type information
about variables. Finally, the judgement Γ ` e : σ (or Γ `Π e : σ if we want to stress the
program Π) means that e has product type σ in a linear type environment Γ .

The judgement Π ` f states that f is a well-typed λ-abstraction in program Π .
Note that the syntax of λ-abstractions does not appear to bind variables, yet it does
bind the variables hidden in the argument type. Note also that the restriction on function

Typing of values C;Γ ` v : τ

(T-var)
C;x:τ ` x : τ

if x ∈ C (T-const)
C; ∅ ` d : τ

if

d ∈ τ ∧
τ ∈ {unit, int, str}

Typing of expressions C;Γ ` e : σ

(T-weak)
C;Γ ` e : σ

C;Γ, x:τ ` e : σ
if


x ∈ C ∧
τ 6= mgr

(T-contr)
C;Γ, x:τ, x:τ ` e : σ

C;Γ, x:τ ` e : σ
if τ 6= mgr

(T-if)
C;Γ ` v : int C;Γ ′ ` e1 : σ C;Γ ′ ` e2 : σ

C;Γ, Γ ′ ` if v then e1 else e2 : σ
(T-xch)

C;Γ, Γ ′ ` e : σ

C;Γ ′, Γ ` e : σ

(T-ret)
C;Γ1 ` x1 : τ1 . . . C;Γn ` xn : τn

C;Γ1, . . . , Γn ` ret (x1,. . .,xn) : (x1:τ1,. . .,xn:τn)

(T-let)

Π(f) = [λ . . .](z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ ′n)

C;Γ1 ` v1 : τ1 . . . C;Γn ` vm : τm

C ∪ {x′1, . . . , x′n};Γ ′, x′1:τ
′
1, . . . , x

′
n:τ ′n ` e′ : σ′′

C;Γ1, . . . , Γm, Γ ′ ` let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′ : σ′′ if (∗)

where (∗)

x′1, . . . , x

′
n pairwise distinct ∧

x′1, . . . , x
′
n /∈ C ∪ dom(Γ ′)

Typing of expressions Γ ` e : σ

(T-lin)
dom(Γ);Γ ` e : σ

Γ ` e : σ
if Γ linear

Well-typedness of λ-abstractions Π ` f

(T-lam)

Π(f) = λe : (x1:τ1,. . .,xm:τm) → σ′

x1:τ1, . . . , xm:τm ` e : σ′

Π ` f

Fig. 3. Typing rules (for a fixed program Π).

types means that the return variables of the body of a λ-abstraction must be disjoint
from its argument variables. Finally, we call a program Π well-typed if Π ` f for all
f ∈ dom(Π) \ dom(Π0).

Lemma 1. Let e be an expression (referring to an implicit program Π), Γ a type
environment and σ a product type.

1. If Γ ` e : σ then free(e) ⊆ dom(Γ) and bound(e) ∩ dom(Γ) = ∅.
2. If Γ ` e : σ and X ⊇ free(e) then Γ |X ` e : σ.

2.2 Interpretation of Types and Effects of Built-in Functions

Constraints. To provide a formal semantics for the built-in functions, we introduce
a many-sorted first-order language L with equality. Sorts of L are the datatypes of
the programming language (note that this excludes the type mgr). Formulae of L are
formed from atomic formulae using the usual Boolean connectives ¬, ∧, ∨, ⇒ and ⇔
(in decreasing order of precedence), and the quantifiers ∀x:τ and ∃x:τ , where x ∈ 〈var〉

is a variable and τ ∈ 〈datatype〉 a sort. Atomic formulae are the Boolean constants
> and ⊥, or are constructed from terms using the binary equality predicate ≈ (which
is available for all sorts), the binary inequality predicate ≤ on sort int or the binary
inclusion predicate ⊆ on sort res{}. Terms are constructed from variables in 〈var〉 and
the term constructors, which are introduced below, alongside associating the sorts to
specific interpretations.

Sort unit is interpreted by the one-element set {?}. Its only constant is ?. There are
no function symbols.

Sort int is interpreted by the integers with infinity. Constants are the integers plus ∞.
Function symbols are the usual − : int → int and +, ·, /,% : int × int → int
(where / and % denote integer division and remainder, respectively).

Sort str is interpreted by the set of strings (over some fixed but unspecified alphabet).
Constants are all strings. The only function symbol is ++ : str × str → str
(concatenation).

Sort res is interpreted by an arbitrary infinite set (whose elements are termed re-
sources). There are no constants, and fromstr : str → res, an embedding of
strings into resources, is the only one function symbol.

Sort res{} is interpreted by multisets of resources. It features the constant ∅ (empty
multiset) and the function symbols ∩,∪,] : res{}×res{} → res{} (intersection,
union and sum of multisets, respectively), | | : res{} → int (size of a multiset),
count : res{}× res → int (counting the multiplicity of a resource in a multiset)
and { : } : res × int → res{} (constructing a “singleton” multiset containing a
given resource with a given multiplicity and nothing else).

Sort τ [] is interpreted by integer-indexed arrays of elements of sort τ , where an integer-
indexed array is a function from an initial segment of the natural numbers to τ .
This sort features the constant null (array of length 0) and the function symbols
len : τ [] → int (length of an array), [] : τ []× int → τ (reading at a given index)
and [:=] : τ []× int× τ → τ [] (updating a given index with a given value). Note
that the values of a[i] and a[i:=v] are generally unspecified if the index i is out of
bounds (i. e., i<0 or i≥ len(a)). As an exception, for i = len(a), the array a[i:=v]
properly extends a, i. e., len(a[i:=v]) = len(a) + 1. This models vectors that can
grow in size.

Treating the type mgr as an alias for the sort res{}, type environments can be seen as
associating sorts to variables. Given a type environment Γ and constraint φ ∈ L, we
write Γ ` φ if φ is well-sorted w. r. t. Γ ; note that this entails free(φ) ⊆ dom(Γ), where
free(φ) is the set of free variables in φ.

Substitutions. A substitution µ maps variables x ∈ 〈var〉 to values µ(x) ∈ 〈val〉
(which are variables again or constants, not arbitrary terms). We denote the domain
of a substitution µ by dom(µ). Given a type environment Γ , we write Γµ for the type
environment that arises from substituting the variables in Γ according to µ. This is
defined recursively: ∅µ = ∅ and (Γ, x:τ)µ equals Γµ, x:τ if x /∈ dom(µ), or Γµ, µ(x):τ
if µ(x) ∈ 〈var〉, or Γµ if µ(x) ∈ 〈const〉. Note that Γµ need not be linear even if
Γ is. Given a formula φ such that Γ ` φ, we write φµ for the formula obtained by
substituting the free variables of φ according to µ, avoiding capture. Note that Γ ` φ
implies Γµ ` φµ.

Valuations. Let Γ be a type environment. A Γ -valuation αmaps variables x ∈ dom(Γ)
to elements α(x) in the interpretation of the sort Γ (x); we call α a valuation if we
do not care about the particular type environment Γ . We denote the domain of α by
dom(α). Note that dom(α) ⊆ dom(Γ) but not necessarily dom(α) = dom(Γ); we
call α a maximal Γ -valuation if dom(α) = dom(Γ). Given a Γ -valuation α and a set
of variables X , we denote the restriction of α to X by α|X ; note that dom(α|X) =
dom(α) ∩X . Restriction induces a partial order � on Γ -valuations, where α′ � α iff
α′|dom(α) = α. Given n pairwise distinct variables xi ∈ dom(Γ) and corresponding
elements di in the interpretation of Γ (xi), we write α{x1 7→ d1, . . . , xn 7→ dn} for the
Γ -valuation α′ that maps the xi to di and all other x ∈ dom(α) to α(x). In the special
case dom(α) = ∅, we may drop α and simply write {x1 7→ d1, . . . , xn 7→ dn}.

Entailment. Let φ, ψ ∈ L be constraints such that Γ ` φ and Γ ` ψ. Given a Γ -
valuation α with free(φ) ⊆ dom(α), we write α |= φ if α satisfies φ. We write |= φ
if α |= φ for all Γ -valuations α with free(φ) ⊆ dom(α), and we write φ |= ψ if
α |= φ implies α |= ψ for all Γ -valuations α with free(φ) ∪ free(ψ) ⊆ dom(α).
Entailment induces a theory T = {φ | free(φ) = ∅ ∧ > |= φ}, with respect to which
entailment can be reduced to unsatisfiability. Note that unsatisfiability w. r. t. T is not
even semi-decidable as T contains Peano arithmetic. Thus for reasoning purposes, we
will generally approximate T by weaker theories.

Effects. Let f be a built-in function with Π(f) = Γ → ∆ (viewing argument and
return types of f as type environments Γ and ∆, respectively.) An effect for f is a pair
of constraints φ and ψ such that Γ ` φ and Γ,∆ ` ψ. (Note that Γ → ∆ being a
function type implies dom(Γ) ∩ dom(∆) = ∅, hence Γ,∆ is a type environment.) We
write φ→ ψ to denote such an effect, and we call φ its precondition and ψ its action.

An effect environment maps the built-in functions f ∈ dom(Π0) to effects for f .
Figure 4 displays the effect environment Θ0, providing an axiomatic, relational seman-
tics for all f ∈ dom(Π0). This semantics ties most built-in functions to corresponding
logical operators in a straightforward way; note the non-trivial preconditions for divi-
sion, reading and writing arrays, and constructing singleton multisets. The effects of
functions operating on resource managers warrant some explanation.

init returns an empty manager m′.
enable non-deterministically adds some sub-multiset of r to manager m, returning

the result in manager m′; the complement of the added multiset is returned in r′.
In an implementation [3] the multiset to be added to m would be chosen by some
policy, perhaps involving security profiles or user input; we use non-determinism
to abstractly model such policy mechanisms.

split splits the multiset held by manager m and distributes it to the managers m′
1 and

m′
2 such that m′

2 gets the largest possible sub-multiset of r.
join adds the multisets held by managers m1 and m2, returning their sum in m′.
consume is an explicit destructor for manager m and all its resources; the linear type

system means that calls to consume are necessary even ifm is known to be empty.
assertEmpty acts as identity on managers, but subject to the precondition that m is

empty; it will be treated specially by the programming language semantics.

f Π0(f) Θ0(f)

idτ (x:τ) → (x′:τ) >→ x′ ≈ x

eqτ (x1:τ ,x2:τ) → (i′:int) >→ i′ ≈ 1 ∧ x1 ≈ x2 ∨ i′ ≈ 0 ∧ x1 6≈ x2

add >→ i′ ≈ i1 + i2

sub >→ i′ ≈ i1 + (−i2)

mul (i1:int,i2:int) → (i′:int) >→ i′ ≈ i1 · i2

div i2 6≈ 0→ i′ ≈ i1 / i2

mod i2 6≈ 0→ i′ ≈ i1 % i2

leq >→ i′ ≈ 1 ∧ i1 ≤ i2 ∨ i′ ≈ 0 ∧ i1 � i2

conc (w1:str,w2:str) → (w′:str) >→ w′ ≈ w1 ++ w2

fromstr (w:str) → (c′:res) >→ c′ ≈ fromstr(w)

nullτ () → (a′:τ []) >→ a′ ≈ null

lengthτ (a:τ []) → (i′:int) >→ i′ ≈ len(a)

readτ (a:τ [],i:int) → (x′:τ) 0≤ i ∧ i < len(a)→ x′ ≈ a[i]

writeτ (a:τ [],i:int,x:τ) → (a′:τ []) 0≤ i ∧ i≤ len(a)→ a′ ≈ a[i:=x]

empty () → (r′:res{}) >→ r′ ≈ ∅
single (c:res,i:int) → (r′:res{}) i≥ 0→ r′ ≈ {c:i}
inter >→ r′ ≈ r1 ∩ r2

union (r1:res{},r2:res{}) → (r′:res{}) >→ r′ ≈ r1 ∪ r2

sum >→ r′ ≈ r1] r2

size (r:res{}) → (i′:int) >→ i′ ≈ |r|
count (r:res{},c:res) → (i′:int) >→ i′ ≈ count(r, c)

include (r1:res{},r2:res{}) → (i′:int) >→ i′ ≈ 1 ∧ r1 ⊆ r2 ∨ i′ ≈ 0 ∧ r1 * r2

init () → (m′:mgr) >→m′ ≈ ∅
enable (m:mgr,r:res{}) → (m′:mgr,r′:res{}) >→ r′ ⊆ r ∧ m] r ≈m′] r′

split (m:mgr,r:res{}) → (m′
1:mgr,m′

2:mgr) >→m′
2 ≈m ∩ r ∧ m≈m′

1]m′
2

join (m1:mgr,m2:mgr) → (m′:mgr) >→m′ ≈m1]m2

consume (m:mgr) → () >→>
assertEmpty (m:mgr) → (m′:mgr) m≈ ∅→m′ ≈m

assertAtLeast (m:mgr,r:res{}) → (m′:mgr) r ⊆m→m′ ≈m

Fig. 4. Types and effects of built-in functions. The subscripts τ indicate families of
functions indexed by τ ∈ 〈datatype〉, except for idτ , which is indexed by τ ∈ 〈type〉.

assertAtLeast acts as identity on managers, but subject to the precondition that the
manager m contains the multiset r; will be treated specially by the programming
language semantics.

To facilitate the presentation of programming language semantics, we capture the logical
semantics of effects directly in terms of valuations. Given a built-in function f with
Π0(f) = Γ → ∆ and Θ0(f) = φ→ ψ, we define Eff Π0

Θ0
(f) to be the set of maximal

(Γ,∆)-valuations such that α ∈ Eff Π0
Θ0

(f) if and only if α |= φ ∧ ψ.

2.3 Small-step Reduction Semantics

We present a stack-based reduction semantics (which is essentially a continuation
semantics) for our programming language. We will show that reduction preserves the

resources stored in resource managers, thanks to linearity. Throughout this section, let
Π be a fixed well-typed program.

Stacks. We call a tuple 〈x1, . . . , xn|α, e〉 a frame if x1, . . . , xn is a list of pairwise
distinct variables, α is a valuation and e is an expression such that

– dom(α) ∩ {x1, . . . , xn} = ∅ and
– dom(α) ⊆ free(e) ⊆ dom(α) ∪ {x1, . . . , xn}.

The roles of e (redex) and α (providing values for the free variables of e) should be
clear. The xi are only present if the frame is suspended waiting for a function to return
in which case the xi act as slots for the return values. A pre-stack is either or ε or
F :: S, where F is a frame and S is a pre-stack. (Pre-stacks essentially correspond to
continuations in an abstract machine interpreting λ-terms in ANF [10].) A stack (or Π-
stack if we want to emphasise the programΠ) is a pre-stack of the form or 〈|α, e〉 ::S.
We call the error stack. A stack of the form 〈|α, ret (x1,. . .,xn)〉::ε is called terminal.
If F :: S is a stack then F is its top frame.

Reduction. Figure 5 presents the rules generating the reduction relation Π on stacks.
We denote the reflexive-transitive closure of Π by ∗

Π . As usual Π may be omitted
if it is understood. Note that reduction performs an eager garbage collection in that it
deallocates unused variables immediately by restricting the valuation α in the post stack
to the free variables of the expression e.

Reduction is deterministic, except for calls to the built-in function enable.

Proposition 2. For all stacks S0 there is at most one stack S1 such that S0 S1,
unless S0 is of the form 〈|α, let (m′,r′) = enable (m,r) in e〉 :: S′0.

Typed stacks. Reduction is untyped since type information is not needed at runtime.
However, various properties of reduction are best stated if the type of variables is
known. Therefore, we annotate stacks with type environments and conservatively extend
reduction to typed stacks.

Given a frame 〈x1, . . . , xn|α, e〉, we call 〈x1, . . . , xn|α, e〉Γ a typed frame if Γ is a
linear type environment such that

– dom(Γ) = dom(α) ∪ {x1, . . . , xn},
– α is a Γ -valuation, and
– Γ ` e : σ for some product type σ.

A typed pre-stack is , or ε, or F ::εwhere F is a typed frame, orF ::F ′ :: S′ where S′ is a
typed pre-stack and F = 〈x1, . . . , xm|α, e〉Γ and F ′ = 〈x′1, . . . , x′n|α′, e′〉Γ

′
are typed

frames such that Γ ` e : (z′1:Γ
′(x′1),. . .,z

′
n:Γ ′(x′n)) for some variables z′1, . . . , z

′
n.

A typed stack is typed pre-stack of the form or 〈|α, e〉Γ :: S. Given a typed frame
F = 〈x1, . . . , xn|α, e〉Γ , we denote its underlying frame 〈x1, . . . , xn|α, e〉 by F \. We
extend this notation to typed (pre-)stacks, writing S\ for the (pre-)stack underlying the
typed (pre-)stack S.

The following proposition shows that reduction does not break the invariants
maintained by typed stacks.

(R-ret)
α′′ = α′{x′1 7→ α(x1), . . . , x

′
n 7→ α(xn)}

〈|α, ret (x1,. . .,xn)〉 :: 〈x′1, . . . , x′n|α′, e′〉 :: S 〈|α′′|free(e′), e′〉 :: S

(R-lettl
1)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′

α′ = {z1 7→ α(v1), . . . , zm 7→ α(vm)}
〈|α, let (x′1,. . .,x

′
n) = f (v1,. . .,vm) in ret (x′1,. . .,x

′
n)〉 :: S 〈|α′|free(e), e〉 :: S

(R-let1)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′ e′ 6= ret (x′1,. . .,x
′
n)

α′ = {z1 7→ α(v1), . . . , zm 7→ α(vm)}
〈|α, let (x′1,. . .,x

′
n) = f (v1,. . .,vm) in e′〉 :: S

 〈|α′|free(e), e〉 :: 〈x′1, . . . , x′n|α|free(e′), e′〉 :: S

(R-let2)

Π0(f) = (z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ ′n)

αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} α′
f ∈ Eff Π0

Θ0
(f) α′

f � αf

α′ = α{x′1 7→ α′
f (z′1), . . . , x

′
n 7→ α′

f (z′n)}
〈|α, let (x′1,. . .,x

′
n) = f (v1,. . .,vm) in e′〉 :: S 〈|α′|free(e′), e′〉 :: S

(R-let 2)

Π0(f) = (z1:τ1,. . .,zm:τm) → σ′ f ∈ {assertEmpty,assertAtLeast}
αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} ∀α′

f ∈ Eff Π0
Θ0

(f) : α′
f � αf

〈|α, let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′〉 :: S

(R-if1)
α(v) 6= 0

〈|α, if v then e1 else e2〉 :: S 〈|α|free(e1), e1〉 :: S

(R-if2)
α(v) = 0

〈|α, if v then e1 else e2〉 :: S 〈|α|free(e2), e2〉 :: S

Fig. 5. Small-step reduction relation (for a fixed program Π). Application of
valuations α extends to values v ∈ 〈val〉 in the natural way, i. e., α(v) = v if v is a
constant.

Proposition 3. Let Ŝ0 be a typed stack and S1 a stack. If Ŝ\
0 S1 then there is a typed

stack Ŝ1 such that Ŝ\
1 = S1.

The proposition justifies the view of reduction on typed stacks as a conservative
extension of the reduction relation defined in Figure 5, where reduction on typed stacks
is defined by Ŝ0 Π Ŝ1 if and only if Ŝ\

0 Π Ŝ\
1; as usual Π may be omitted if it is

understood.
We call a stack S0 stuck if there is no stack S1 such that S0 S1, and S0 is

neither terminal nor the error stack. Our next result shows that reduction on typed
stacks will get stuck only at calls to built-in functions (other than assertEmpty and
assertAtLeast), and only if the preconditions of these calls fail. As the effects listed
in Figure 4 reveal, reduction will get stuck only upon attempts to divide by 0, access
arrays out of bounds or construct singleton multisets with negative multiplicity.

Proposition 4. Let Ŝ be a typed stack. If Ŝ\ is stuck then it is of the form

〈|α, let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′〉 :: S′ ,

f ∈ dom(Π0) \ {assertEmpty,assertAtLeast}, and there is no α′f ∈ Eff Π0
Θ0

(f)
such that α′f � αf , where αf is defined as in rule (R-let2).

Preservation of resources. Given a typed frame F = 〈x1, . . . , xn|α, e〉Γ , we define the
multiset res(F) of resources in F by res(F) =

⊎
{α(x) | x ∈ dom(α), Γ (x) = mgr}.

We extend res to typed non-error stacks by defining res(ε) = ∅ and res(F :: S) =
res(F)] res(S). Proposition 5 states resource preservation: The sum of all resources in
the system remains unchanged by reduction, unless the built-in functions enable and
consume are called. The former admits increasing (but not decreasing) the resources,
whereas the latter behaves the other way round. Obviously, resource preservation de-
pends on the linearity restriction on type mgr, otherwise resources could be duplicated
by re-using managers.

Proposition 5. Let S0 and S1 be typed stacks such that S0 S1 6= .

1. If S0 is of the form 〈|α, let (m′,r′) = enable (m,r) in e〉Γ :: S′0 then res(S0) ⊆
res(S1).

2. If S0 is of the form 〈|α, let () = consume (m) in e〉Γ :: S′0 then res(S0) ⊇
res(S1).

3. In all other cases, res(S0) = res(S1).

2.4 Erasing Resource Managers

According to the reduction semantics, a call to assertEmpty or assertAtLeast
either does nothing1 or goes wrong, and calling one of these two tests is the only way
to go wrong. Hence, if we know that a program cannot go wrong (and Section 3 will
present a type system for proving just that) then we can erase all calls to these built-ins
(or rather, replace them by true no-ops) and obtain an equivalent program.

In fact, we can do more than that. Once the assertion built-ins are gone, it is
even possible to remove the resource managers themselves. By the design of the
programming language (in particular, the choice of built-in operations on resource
managers) the contents of resource managers cannot influence the values of variables
of any other type. Informally, this justifies replacing the resource managers themselves
by variables of type unit whenever we know that a program cannot go wrong. Erasing
resource managers also means that the built-in functions acting on managers can be
replaced by simpler ones on unit: all of which are no-ops, except for enable itself.2

The remainder of the section formalises this intuition.
Figure 6 shows the necessary program transformations to erase resource managers.

Most fundamentally, erasure maps the manager type mgr to the unit type unit.
1 Due to the linearity restriction on resource managers these functions must copy the input

manager to an output manager; a true no-op would violate resource preservation.
2 We do keep the calls in place, so that erasure preserves the structure of programs; this simplifies

reasoning, and does not preclude optimising away no-op calls at a later stage.

Erasure τ◦ of types τ
τ◦ = unit if τ = mgr
τ◦ = τ otherwise

Erasure σ◦ of product types σ
(x1:τ1,. . .,xn:τn)◦ = (x1:τ

◦
1 ,. . .,xn:τ◦n)

Erasure Γ ◦ of type environments Γ
∅◦ = ∅

(Γ, x:τ)◦ = Γ ◦, x:τ◦

Erasure Π◦ of programs Π
dom(Π◦) = dom(Π)

Π◦(f) = λe : σ◦ → σ′◦ if Π(f) = λe : σ → σ′

Π◦(f) = σ◦ → σ′◦ if Π(f) = σ → σ′

Erasure Θ◦
0 of effect environment Θ0

dom(Θ◦
0) = dom(Θ0)

Θ◦
0(enable) = >→ r′ ⊆ r

Θ◦
0(f) = >→> if


f ∈ {init, split, join, consume} ∪

{assertEmpty,assertAtLeast}
Θ◦

0(f) = Θ0(f) otherwise

Erasure α◦ of Γ -valuations α
dom(α◦) = dom(α)

α◦(x) = ? if Γ (x) = mgr
α◦(x) = α(x) otherwise

Erasure S◦ of typed stacks S
 ◦ = ε◦ = ε (〈x1, . . . , xn|α, e〉Γ :: S)◦ = 〈x1, . . . , xn|α◦, e〉Γ

◦
:: S◦

Fig. 6. Erasure of resource managers.

Erasure on types determines erasure on product types, type environments, programs
and valuations (where erasure uniformly maps the values of mgr-variables to ?, the
only value of type unit), which in turn determines erasure on typed stacks. As outlined
above, erasure on effect environments trivialises the effect of resource manager built-
ins, except enable, and preserves the effects of all built-ins not operating on managers.
The effect of enable after erasure is to non-deterministically choose a sub-multiset of
r and return its complement in r′. This reflects the fact that calls to enable provide
points of interaction for the policy (e. g., the user) to decide how many resources the
system is granted. Erasing resource managers does not mean that policy decisions are
fixed, it just removes the managers’ book keeping about those decisions.

Lemma 6. Let Π be a well-typed program and S a typed Π-stack. Then Π◦ is a well-
typed program and S◦ a typed Π◦-stack.

Erasure makes trivial the effects of assertEmpty and assertAtLeast, and in
particular, replaces their precondition by >. Thus a program cannot go wrong after
erasure, as rule (R-let 2) will never apply.

Proposition 7. Let Π be a well-typed program and S a Π◦-stack S. Then S 6 ∗
Π◦ .

The next result states that the small-step reduction relation Π of a program Π is
almost bisimulation equivalent to the reduction relation Π◦ of its erasure. In fact,
it shows that the relation R = {〈S, S◦〉 | S is a Π-stack} would be a bisimulation if
 Π could not reduce stacks to the error stack . Put differently, if Π cannot go wrong
then Π and Π◦ are bisimulation equivalent. The proof of this theorem is by case
analysis on the reduction relation Π of the unerased program. As a corollary, we get
that reachability in the erased program is essentially the same as reachability in the
unerased one, provided that the unerased program cannot go wrong.

Theorem 8. Let Π be a well-typed program and Ŝ0 a typed Π-stack with Ŝ0 6 Π .

1. For all typed Π-stacks Ŝ1, if Ŝ0 Π Ŝ1 then Ŝ◦0 Π◦ Ŝ◦1 .
2. For all typed Π◦-stacks S1, if Ŝ◦0 Π◦ S1 then there is a typed Π-stack Ŝ1 such

that Ŝ0 Π Ŝ1 and Ŝ◦1 = S1.

Corollary 9. LetΠ be a well-typed program and S0 a typedΠ-stack. If S0 6 ∗
Π then

{S◦ | S0 ∗
Π S} = {S | S◦0 ∗

Π◦ S}.

What distinguishes erasure of resource managers from other erasure results (e. g.,
type erasure during compilation, Java generics erasure) is that here, erasure does not
completely remove a language construct. Instead, it removes the book keeping but
retains the semantically important bit that deals with dynamic policy decisions.

2.5 Big-step Relational Semantics

The reduction semantics presented in Section 2.3 is good for showing preservation
properties, like the preservation of resources. However, it does not easily yield a
relational view on functions, relating input and output parameters. This is achieved
by a relational semantics, which we will prove equivalent to the reduction semantics.
Contrary to the reduction semantics, which was originally untyped and had type
environments added conservatively, the relational semantics will be typed from the start.
(Types do not hurt here, as the relational semantics is not geared towards execution.)

Throughout this section, we assume that Π is a well-typed program. A state β is
either the error state or a normal state 〈Γ ;α〉, where Γ is a linear type environment
and α a maximal Γ -valuation. Given an expression e, a normal state 〈Γ ;α〉 and a state
β′, we define the judgement e, 〈Γ ;α〉 ⇓Π β′ (or e, 〈Γ ;α〉 ⇓ β′ if Π is understood)
by the rules in Figure 7 if dom(Γ) ∩ bound(e) = ∅ and there are Γe and σ such that
Γ � Γe and Γe ` e : σ. The intended meaning of e, 〈Γ ;α〉 ⇓ β′ is that evaluating
expression e in state 〈Γ ;α〉 may terminate and result in state β′.

The reduction semantics deallocates variables once they become unused (an eager
garbage collection, so to say), which is essential for the linear variables as otherwise
resource preservation would not hold. However, the intermediate values of variables are
thus lost. In contrast, the relational semantics names and records all intermediate values,
even the linear ones, as e, 〈Γ ;α〉 ⇓ 〈Γ ′;α′〉 implies Γ ′ � Γ and α′ � α.

By definition, violations of resource safety manifest themselves in reductions
ending in the error stack, and hence reductions which diverge or get stuck cannot

Evaluation of expressions e, 〈Γ ;α〉 ⇓ β′

(E-ret)
ret (x1,. . .,xn), 〈Γ ;α〉 ⇓ 〈Γ ;α〉

(E-let1)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ ′n) Γf = z1:τ1, . . . , zm:τm

αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} e, 〈Γf ;αf 〉 ⇓ 〈Γ ′
f ;α′

f 〉
Γ ′ = Γ, x′1:τ

′
1, . . . , x

′
n:τ ′n α′ = α{x′1 7→ α′

f (z′1), . . . , x
′
n 7→ α′

f (z′n)}
e′, 〈Γ ′;α′〉 ⇓ β′′

let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓ β′′

(E-let 1)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′ Γf = z1:τ1, . . . , zm:τm

αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} e, 〈Γf ;αf 〉 ⇓
let (x′1,. . .,x

′
n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓

(E-let2)

Π(f) = (z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ ′n)

αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} α′
f ∈ Eff Π0

Θ0
(f) α′

f � αf

Γ ′ = Γ, x′1:τ
′
1, . . . , x

′
n:τ ′n α′ = α{x′1 7→ α′

f (z′1), . . . , x
′
n 7→ α′

f (z′n)}
e′, 〈Γ ′;α′〉 ⇓ β′′

let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓ β′′

(E-let 2)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′ f ∈ {assertEmpty,assertAtLeast}
αf = {z1 7→ α(v1), . . . , zm 7→ α(vm)} ∀α′

f ∈ Eff Π0
Θ0

(f) : α′
f � αf

let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓

(E-if1)
e1, 〈Γ ;α〉 ⇓ β′

if v then e1 else e2, 〈Γ ;α〉 ⇓ β′ if α(v) 6= 0

(E-if2)
e2, 〈Γ ;α〉 ⇓ β′

if v then e1 else e2, 〈Γ ;α〉 ⇓ β′ if α(v) = 0

Fig. 7. Big-step evaluation relation (for a fixed program Π).

violate resource safety. Therefore, resource safety is not affected by the fact that the
relational semantics ignores such reductions. Under this proviso, Proposition 10 shows
the equivalence of reduction and relational semantics.

Proposition 10. Let 〈Γ ;α〉 and 〈Γ ′;α′〉 be states. Let e be an expression such that
dom(Γ) = free(e) and Γ ` e : σ for some product type σ. Then

1. e, 〈Γ ;α〉 ⇓ if and only if 〈|α, e〉Γ :: ε ∗ , and
2. e, 〈Γ ;α〉 ⇓ 〈Γ ′;α′〉 if and only if there is a typed stack 〈|α′′, ret (x1,. . .,xn)〉Γ ′′

::ε
such that 〈|α, e〉Γ :: ε ∗ 〈|α′′, ret (x1,. . .,xn)〉Γ ′′

:: ε and Γ ′ � Γ ′′ and α′ � α′′.

3 Effect Type System

In this section, we will develop a type system to statically guarantee dynamic resource
safety, i. e., the absence of reductions to the error stack . We will do so by annotating

functions with effects and then extending the notion of effect to a judgement on
expressions, which we will define by a simple set of typing rules.

3.1 Effect Type System

We extend the notion of effect φ→ ψ from built-in functions to λ-abstractions. To be
precise, φ→ψ is an effect for f if Γ ` φ and Γ,∆ ` ψ, whereΠ(f) = [λ . . .]Γ → ∆,
regardless of whether f is built-in or a λ-abstraction. In line with this extension, an
effect environment Θ maps all functions f ∈ dom(Π) to effects Θ(f) for f .

In order to derive the effects of λ-abstractions, we generalise effects to effect types
for expressions and develop a type system for inductively constructing such effect types.
Effects relate input and output parameters of functions by logical formulae. Likewise,
effect types shall relate input and output parameters of expressions. Here, the input
parameters of an expression are its free variables; the output parameters are those
variables that are not free yet but will become free during reduction, i. e., the (let-)bound
variables. Formally, an effect type Γ ;φ→∆;ψ is a pair of constraints φ and ψ together
with a pair of type environments Γ and ∆ such that dom(Γ)∩dom(∆) = ∅ and Γ ` φ
and Γ,∆ ` ψ. We call φ and ψ precondition and action, and Γ and ∆ input and output
(parameters), respectively. Given an expression e, we say that an effect type Γ ;φ→∆;ψ
is an effect type for e if dom(Γ) ∩ bound(e) = ∅.

We say that an effect type Γ ;φ→∆;ψ is stronger than an effect type Γ ′;φ′→∆′;ψ′,
denoted by Γ ;φ→ ∆;ψ ⊇ Γ ′;φ′ → ∆′;ψ′, if φ′ |= φ and (φ′ ∧ ψ) |= ψ′, i. e., the
stronger effect type Γ ;φ→ ∆;ψ has a weaker precondition but stronger action. The
stronger-than relation ⊇ is a quasi-order, i. e., reflexive and transitive, and induces an
equivalence relation on effect types, the as-strong-as relation, which we denote by ≡.
Note that for every effect type Γ ;φ→∆;ψ is as strong as an effect type Γ ′;φ→∆′;ψ
with linear type environments Γ ′ and ∆′.

Figure 8 presents the typing rules for deriving effect types. There, the judgement
Θ `Π e : Γ ;φ→∆;ψ states that expression e has effect type Γ ;φ → ∆;ψ in the
context of program Π and effect environment Θ. If Π is understood, we may omit it
and write Θ ` e : Γ ;φ→∆;ψ instead. The judgement Π,Θ ` f means that the effect
type ascribed to a λ-abstraction f by Θ and Π is consistent with the effect type derived
for the body of f . We say that Θ is an admissible effect environment for a program Π
if Π,Θ ` f for all λ-abstractions f ∈ dom(Π) \ dom(Π0).

Lemma 11. Let e be an expression, Θ an effect environment (referring to an implicit
program Π) and Γ ;φ→∆;ψ an effect type. If Θ ` e : Γ ;φ→∆;ψ then Γ ;φ→∆;ψ
is an effect type for e.

Theorem 12 states soundness of effect typing w. r. t. the big-step relational semantics.
The proof is by double induction on the derivation of relational semantics judgements
over the derivation of effect type judgements. As a corollary, we get that reduction
starting from a state that satisfies the precondition can’t go wrong, hence resource
managers can be erased. In fact, the untyped reductions in the erased program match
exactly the typed reductions in the original program.

Typing of expression effects Θ ` e : Γ ;φ→∆;ψ

(ET-weak)
Θ ` e : Γ ;φ→∆;ψ

Θ ` e : Γ ′;φ′ →∆′;ψ′ if


dom(Γ ′) ∩ bound(e) = ∅ ∧
Γ ;φ→∆;ψ ⊇ Γ ′;φ′ →∆′;ψ′

(ET-ret)
Θ ` ret (x1,. . .,xn) : ∅;>→ ∅;>

(ET-if)
Θ ` e1 : Γ ; v 6≈ 0 ∧ φ→∆;ψ Θ ` e2 : Γ ; v ≈ 0 ∧ φ→∆;ψ

Θ ` if v then e1 else e2 : Γ ;φ→∆;ψ

(ET-let)

Π(f) = [λ . . .]Γ → ∆ Γ = z1:τ1, . . . , zm:τm ∆ = z′1:τ
′
1, . . . , z

′
n:τ ′n

Θ(f) = φ→ ψ µ = {z1 7→ v1, . . . , zm 7→ vm, z
′
1 7→ x′1, . . . , z

′
n 7→ x′n}

Θ ` e′ : Γ ′, ∆′;φ′ ∧ ψ′ →∆′′;ψ′′

Θ ` let (x′1,. . .,x
′
n) = f (v1,. . .,vm) in e′ : Γ ′;φ′ →∆′, ∆′′;ψ′ ∧ ψ′′ if (∗)

where (∗)


dom(Γ ′) ∩ {x′1, . . . , x′n} = ∅ ∧
Γµ;φµ→∆µ;ψµ ⊇ Γ ′;φ′ →∆′;ψ′

Well-typedness of λ-abstraction effects Π,Θ ` f

(ET-lam)
Π(f) = λe : Γ → ∆ Θ(f) = φ→ ψ Θ ` e : Γ ;φ→∆;ψ

Π,Θ ` f

Fig. 8. Typing rules for effect types (for a fixed program Π).

Theorem 12. Let Θ be an admissible effect environment for a well-typed program Π .
Let e be an expression and Γ ;φ→∆;ψ an effect type such that Θ ` e : Γ ;φ→∆;ψ.
Let 〈Γ ;α〉 and β′ be states such that e, 〈Γ ;α〉 ⇓ β′ (which implies Γe ` e : σ for some
Γe, σ). If α |= φ then β′ = 〈Γ ′;α′〉 for some Γ ′ and α′ such that α′ |= φ ∧ ψ. (In
particular, if α |= φ then β′ 6= .)

Corollary 13. Let Θ be an admissible effect environment for a well-typed program Π .
Let e be an expression and Γ ;φ→∆;ψ an effect type such thatΘ `Π e : Γ ;φ→∆;ψ.
Let α be a maximal Γ -valuation, and let Ŝ0 = 〈|α|free(e), e〉Γ |free(e) :: ε be a typed
Π-stack (which implies Γ |free(e) `Π e : σ for some σ). If α |= φ then

1. Ŝ0 6 ∗
Π and

2. for all (untyped) Π◦-stacks S, Ŝ◦\0
∗
Π◦ S if and only if there is a typed Π-stack

Ŝ such that Ŝ0 ∗
Π Ŝ and Ŝ◦\ = S. (In particular, Ŝ◦\0 6 ∗

Π◦ .)

3.2 Example: Bulk Messaging Application

To illustrate the use of the effect type system, we revisit the example from Figure 1. The
interesting bits of code are in the functions send bulk and send msg.

The function send bulk first builds up a multiset of resources r by converting the
strings representing phone numbers in nums into resources. Next it attempts to authorise
the use of all resources by having enable add r to an empty resource manager m. If this

f Θ(f)

send bulk >→>
res from nums >→ r≈ bagof (mapfromstr (nums))

res from nums’
0 ≤ i ≤ len(nums) ∧ r’≈ bagof (mapfromstr (subarray(nums, i, len(nums))))

→ r≈ bagof (mapfromstr (nums))

send msgs bagof (mapfromstr (nums)) ⊆ m→ m≈ m’] bagof (mapfromstr (nums))

send msgs’
0 ≤ i ≤ len(nums) ∧ bagof (mapfromstr (subarray(nums, 0, i))) ⊆ m

→ m≈ m’] bagof (mapfromstr (subarray(nums, 0, i)))

send msg count(m, fromstr(num)) ≥ 1→ m≈ m’] {|fromstr(num):1|}
prim send msg >→>

∀a : len(mapfromstr (a))≈ len(a)

∀a∀i : 0≤ i < len(a) ⇒ mapfromstr (a)[i]≈ fromstr(a[i])

∀a∀j∀k : 0≤ j ≤ k ≤ len(a) ⇒ len(subarray(a, j, k)) = k + (−j)

∀a∀j∀k∀i : 0≤ j ≤ k ≤ len(a) ∧ 0≤ i < len(subarray(a, j, k)) ⇒ subarray(a, j, k)[i] = a[j + i]

∀a : |bagof (a)| ≈ len(a)

∀a : len(a)≈ 1 ⇒ bagof (a)≈ {a[0]:1}
∀a∀k : 0≤ k ≤ len(a) ⇒ bagof (a)≈ bagof (subarray(a, 0, k))] bagof (subarray(a, k, len(a)))

Fig. 9. Bulk messaging application: admissible effect environment Θ and axiomatisa-
tion of theory extension; for the sake of readability sort information is suppressed in the
axioms.

fails, i. e., the multiset r’ returned by enable is of non-zero size, send bulk terminates
(after destroying m’ and whatever resources it holds).3 If authorising all resources
succeeds, send bulk calls send msgs to actually send the messages while checking that the
manager m’ contains the required resources. After that, send bulk checks that send msgs

has used up all resources by asserting that the returned manager m” is empty; failing
this assertion will trigger a runtime error. Finally, send bulk explicitly destroys the empty
manager m’” and terminates.

The function send msg sends one message, checking whether the resource manager
m holds the resource required. It does so by converting the string num into a singleton
multiset of resources r. Then it splits the manager m into m’ and m r, so that m r contains
at most the resources in r. Next, send msg asserts that m r contains at least r; failing
this assertion will trigger a runtime error. Succeeding the assertion, send msg calls the
primitive send function, destroys the now used resource by consuming m r’, and returns
the remaining resources in the manager m’.

The bulk messaging example is statically resource safe, as witnessed by the admis-
sible effect environment displayed in Figure 9. Of particular interest is the effect>→>
ascribed to the main function send bulk. This least informative effect expresses nothing
about the function itself but implies the absence of runtime errors via Corollary 13.

The effects require an extension of the theory T (see Section 2.2) by three new
functions, axiomatised in Figure 9. The function map maps an array of strings to an

3 A more sophisticated version of the application could deal more gracefully with enable
granting only part of the requested resources. This would require more complex code to inspect
the multisets r and r’ (but not the resource manager m’).

array of resources, subarray takes an array and cuts out the sub-array between two
given indices, and bagof converts an array of resources to a multiset (containing the
same elements with the same multiplicity). Note that the axiomatisation of bagof is not
complete4 but sufficient for our purposes.

Effect type checking, e. g., for checking admissibility of the effect environment Θ
from Figure 9, requires checking the side condition of the weakening rule (ET-weak),
which involves checking logical entailment w. r. t. to an extension of the theory T . Due
to the high undecidability of T , we actually check entailment w. r. t. (an extension of)
an approximation of T ; in particular, we approximate multiplication and division by
uninterpreted functions. For the bulk messaging example, we used an SMT solver [4]
that can handle linear integer arithmetic and arrays. We added axioms for multisets and
the axioms in Figure 9. Due to an incomplete quantifier instantiation heuristic, we had
to instantiate a number of these axioms by hand, yet eventually, the solver was able to
prove all the entailments required by the weakening rules.

Even though arising from a single example, we believe that the extension of the
theories of multisets and arrays with the functions subarray and bagof is quite generic
and could prove useful in many cases.

4 Conclusion

We have presented a programming language with support for complex resource man-
agement, close to the standard SSA/ANF forms of compiler intermediate languages [1].
By construction, programs are dynamically resource safe in that any attempts to abuse
resources are trapped. We have extended the language with an effect type system which
guarantees the for well-typed programs no such attempts occur: we have static resource
safety. In addition, for such programs the bookkeeping required by dynamic resource
management can be erased.

Related Work. Many tools and methods have been proposed to assist with resource
management at runtime, e.g., in Java, the JRes [9] and J-Seal [8] frameworks. Generally,
these aim to enable programs to react to fluctuations of resources caused by an
unpredictable environment. Our aim, however is to track the flow of resources through
the program, where the environment can influence the availability of resources only
at well-understood points of interaction with the program and with clear availability
policies. This offers the chance for more precise resource control whose behaviour can
be predicted statically.

This paper builds on previous work [3] with a Java library implementing resource
managers and focusing on the dynamic aspects of resource management policies. This
Java library supports essentially the same operations on resource managers as our
functional language, except that state is realised by destructive updates instead of linear
types. While [3] does not provide a static analysis to prove static resource safety, it does
outline how dynamic accounting could be erased if static resource safety were provable.
Our work here shows one way to do just that.

4 A complete axiomatisation of bagof is possible in the full first-order theory of multisets and
arrays but it is much more complicated and unusable in practise.

Our approach is in line with a general trend of providing the programmer with
language-based mechanisms for security and additional static analyses (often using type
systems) which use these mechanisms. This combination provides a desirable graceful
degradation: if static analysis succeeds in proving certain properties, then the program
may be optimised without affecting security. Yet, even if the analyses fail the language
based mechanisms will enforce the security properties at runtime.

The context of our work is the MOBIUS project [5] on proof-carrying code (PCC)
for mobile devices. Our effect type system is very simple and in principle well-suited
for a PCC setting where checkers themselves are resource bounded. However, the
weakening rule relies on checking logical entailment in a first-order theory, which is
undecidable in general. Therefore, a certificate for PCC need not only provide a type
derivation tree but also proofs (in some proof system) for the entailment checks in the
weakening rule. The development of a suitable such proof system is a topic for further
research, as is the investigation of decidable fragments of relevant first-order theories.

Acknowledgements. This work was funded in part by the Sixth Framework programme of
the European Community under the MOBIUS project FP6-015905. This paper reflects only
the authors’ views and the European Community is not liable for any use that may be made
of the information contained therein. Ian Stark was also supported by an Advanced Research
Fellowship from the UK Engineering and Physical Sciences Research Council, EPSRC project
GR/R76950/01.

References
[1] A. W. Appel. SSA is functional programming. SIGPLAN Notices, 33(4):17–20, 1998.
[2] D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program logic

for resources. Theoret. Comput. Sci., 389(3):411–445, 2007.
[3] D. Aspinall, P. Maier, and I. Stark. Monitoring external resources in Java MIDP. Electron.

Notes Theor. Comput. Sci., 197:17–30, 2008.
[4] C. Barrett, L. de Moura, and A. Stump. Design and results of the 2nd annual satisfiability

modulo theories competition. Form. Meth. Syst. Des., 31(3):221–239, 2007.
[5] G. Barthe, L. Beringer, P. Crégut, B. Grégoire, M. Hofmann, P. Müller, E. Poll, G. Puebla,

I. Stark, and E. Vétillard. MOBIUS: Mobility, ubiquity, security. Objectives and progress
report. In Proc. TGC 2006, LNCS 4661, pp.10–29. Springer, 2007.

[6] L. Beringer, M. Hofmann, A. Momigliano, and O. Shkaravska. Automatic certification of
heap consumption. In Proc. LPAR 2004, LNCS 3452, pp.347–362. Springer, 2005.

[7] F. Besson, G. Dufay, and T. P. Jensen. A formal model of access control for mobile
interactive devices. In Proc. ESORICS 2006, LNCS 4189, pp.110–126. Springer, 2006.

[8] W. Binder, J. Hulaas, and A. Villazón. Portable resource control in Java. In Proc.
OOPSLA 2001, pp.139–155. ACM, 2001.

[9] G. Czajkowski and T. von Eicken. JRes: A resource accounting interface for Java. In Proc.
OOPSLA ’98, pp.21–35. ACM, 1998.

[10] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with
continuations. In Proc. PLDI ’93, pp.237–247. ACM, 1993.

[11] A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract predicates and mutable
ADTs in Hoare type theory. In Proc. ESOP 2007, LNCS 4421, pp.189–204. Springer, 2007.

[12] Unknown. Redbrowser.A, Feb. 2006. J2ME trojan, variously identified in the wild as
Redbrowser.A (F-Secure), J2ME/Redbrowser.a (McAfee), Trojan.Redbrowser.A (Syman-
tec), Trojan-SMS.J2ME.Redbrowser.a (Kaspersky Lab).

