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Abstract

We propose a bounded model checking procedure for programs manipulating
dynamically allocated pointer structures. Our procedure checks whether a
program execution of length n ends in an error (e. g., a NULL dereference)
by testing if the weakest precondition of the error condition together with the
initial condition of the program (e. g., program variable x points to a circular
list) is satisfiable. We express error conditions as formulas in the 2-variable
fragment of the Bernays-Schönfinkel class with equality. We show that this
fragment is closed under computing weakest preconditions. We express the
initial conditions by unary relations which are defined by monadic Datalog
programs.

Our main contribution is a small model theorem for the 2-variable frag-
ment of the Bernays-Schönfinkel class extended with least fixed points ex-
pressible by certain monadic Datalog programs. The decidability of this ex-
tension of first-order logic gives us a bounded model checking procedure for
programs manipulating dynamically allocated pointer structures. In contrast
to SAT-based bounded model checking, we do not bound the size of the heap
a priori, but allow for pointer structures of arbitrary size. Thus, we are doing
bounded model checking of infinite state transition systems.
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1 Introduction

Automatic verification of programs that can manipulate pointers into dynamically
allocated memory is a challenging task, even for simple safety properties such as
“there is no NULL dereference”. In general, the problem is undecidable as the
reachable state space of programs with dynamic memory allocation is infinite.
Decidability can be traded off for precision by over- or under-approximating the
reachable state space. Over-approximation is used by techniques based on abstrac-
tion, e. g., the shape analysis framework [23]. In bounded model checking (BMC),
the set of reachable states is under-approximated by limiting the runtime or the
memory of a program to an a priori chosen bound [6, 13]. Thus, BMC cuts off all
states that require more than the chosen amount of time or space to be reached. As
a consequence of under-approximation, BMC can not prove safety properties (un-
less the diameter of the state space is less than the time bound), it can only detect
their violation. Progressively increasing the bound actually yields a semi-algorithm
for detecting errors, provided the BMC problem is decidable.

The decidability of the BMC problem may seem trivial at first view. Note,
however, that although we assume an explicit bound on the length of the program
execution, we do not have any bound on the size of the initial data structure. This
implies that the explored model is an infinite and infinitely branching transition
system: given an initial condition like “the variable x points to a structure of type
T ” we have to consider all transitions from the initial state to a state where x points
to a structure of type T and size n, for infinitely many numbers n. Although it is
obvious that in a finite execution a program may explore only a finite fragment
of the initial data structure and it is relatively easy to compute a bound on the
size of this explored part, this observation alone still does not give any bound on
the size of the initial data structure as a whole. In other words, even if we are
in a bounded-model-checking setup, we still have to deal with an infinite set of
reachable states due to the infinite branching in the underlying transition system.
To overcome this problem we prove a kind of pumping lemma that implies that it
is enough to consider initial structures up to a certain size.

The worst-case complexity of our method (2-NEXPTIME) may also look dis-
couraging. Again one has to note that the doubly-exponential blowup comes from
the specification of the initial data structure. As we show in section 3.3, in com-
mon cases the complexity is doubly exponential in the specification, but not in the
length of the execution. In particular, for non-branching pointer structures like lists,
and for fixed programs, the complexity boils down to NPTIME. Note also that it
is not appropriate to directly compare the general complexity of our method with
other approaches where the initial structure is given explicitly or its size is a priori
bounded — one should not expect that any method could explore a data structure
of doubly exponential size in less than doubly exponential time.

Our method to decide the BMC problem relies on the following observations.

• Error conditions like “x is a dangling pointer” are expressible in the 2-
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variable fragment of the Bernays-Schönfinkel class with equality.

• The fragment is closed under weakest preconditions w. r. t. finite paths.

• Data structures like trees, singly or doubly linked lists and even circular lists
are expressible in a fragment of monadic Datalog.

• The combination of the Datalog fragment and the above fragment of the
Bernays-Schönfinkel class is decidable.

In section 2, we reduce the BMC problem to satisfiability in the Bernays-Schönfin-
kel class with Datalog. Section 3 presents our main technical contribution: decid-
ability of satisfiability of the 2-variable fragment of the Bernays-Schönfinkel class
with equality extended by a certain class of monadic Datalog programs. This result
follows from a small model property of the logic, which we prove by a kind of
pumping technique.

2 Pointer Programs

We investigate imperative programs that manipulate dynamic data structures on the
heap. Given a program and a specification of its input, i. e., the heap contents upon
start-up, we want to check safety properties, e. g., whether the program can crash
by dereferencing a dangling pointer.

2.1 Syntax

A program P consists of two parts, a struct declaration specifying templates of
heap cells and a control flow graph specifying the possible program executions.

A struct declaration is finite directed graph with uniquely labeled edges, i. e.,
there are no two edges with the same label. We call the vertices of this graph tem-
plates, the edge labels we call fields. An edge label r is a field of a template T ,
denoted by r ∈ T , if r labels one of T ’s outgoing edges; note that due to unique
labeling, each r is a field of exactly one template T .

A control flow graph (CFG) is a finite directed graph whose edges are labeled
by actions. We call the vertices of a control flow graph (control) locations, and we
assume that there is a distinguished location init , which does not have incoming
edges. The set of actions Act is defined by the following grammar, where T is a
template, s is a field, x and y are program variables, e is a program variable or a
constant (including NULL), and γ is a formula built from program variables and
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init

•

•

•

error •

•

•

•

•

assume(∀v¬ next(e, v))

ne := next(e)assume(∀v¬ prev(e, v))

pe := prev(e)assume(∀v¬ next(e, v))

freecl(e)assume(∀v¬ prev(e, v))

e := newcl()assume(∀v¬ next(e, v))

next(e) := neassume(∀v¬ prev(e, v))

prev(e) := peassume(∀v¬ next(pe, v))

next(pe) := eassume(∀v¬ prev(ne, v))

prev(ne) := e

control flow graph with error conditions

cl

next

prev

struct declaration

cl(u)← u≈ e, next(u, v), cl′(v).
cl

′(u)← u≈ e.
cl

′(u)← next(u, v), cl′(v).

Datalog programP

∀u, v
`

prev(u, v)⇔ next(v, u)
´

∧
∀v ¬ next(NULL, v) ∧
∀v ¬ prev(NULL, v)

axiom φ

Figure 1: Replacing an element in a doubly linked circular list by a new one; the
initial condition that e points to a doubly linked circular list is expressed by the
formula φ ∧ P ∧ cl(e).

constants (including NULL), the equality symbol ≈ and the Boolean connectives.

Act ::= assume(γ) Assume condition γ.
| y := e Assign the value e to the variable y.
| y := s(x) Read the s-field of the cell pointed to by x into y.
| s(x) := e Write e to the s-field of the cell pointed to by x.
| freeT (x) Deallocate the T -cell pointed to by x.
| y := newT () Allocate a new T -cell and assign its address to y.

A path π (of length n) in the CFG is a sequence 〈`0, α1, `1, . . . , αn, `n〉 alternating
between locations `i and actions αj . Note that there is no action for procedure calls,
yet in bounded model checking, calls can be handled by inlining procedure bodies.

Figure 1 shows a sample program. Upon start it expects that the variable e

points to a doubly linked circular list (realized by next- and prev-pointers). The
program deallocates the cell pointed to by e, allocates a new cell and inserts it in
place of the old one (using the temporary variables ne and pe).

2.2 Semantics

Given a program, we will provide a transition system semantics, i. e., a directed
graph whose vertices are states and whose edges are transitions. Informally, a state
is the contents of the program variables, i. e., an assignment of the program vari-
ables to values, and the contents of the heap, i. e., an assignment of heap addresses
to values; hereby, a value may again be a heap address. We represent both assign-
ments by means of a relational first-order structure with constants. The interpre-
tations of constants make up the contents of the program variables, whereas the
interpretations of the relations make up the contents of the heap. More precisely,
each field r of a template T is interpreted by a functional binary relation, so r(u, v)
means that an instance of T lives at address u in the heap, and v is the uniquely
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Jassume(γ)K ≡ γ ∧
V

c∈c̄
c′ ≈ c ∧

V

r∈r̄
r′ = r

Jy := eK ≡ y′ ≈ e ∧
V

c∈c̄\{y} c
′ ≈ c ∧

V

r∈r̄
r′ = r

Jy := s(x)K ≡ s(x, y′) ∧
V

c∈c̄\{y} c
′ ≈ c ∧

V

r∈r̄
r′ = r

Js(x) := eK ≡ ∀u, v
`

s′(u, v)⇔ u≈ x ∧ v ≈ e ∨ u 6≈ x ∧ s(u, v)
´

∧
V

c∈c̄
c′ ≈ c ∧

V

r∈r̄\{s} r
′ = r

JfreeT (x)K ≡
V

s∈T
∀u, v

`

s′(u, v)⇔ u 6≈ x ∧ s(u, v)
´

∧
V

c∈c̄
c′ ≈ c ∧

V

r∈r̄\T r
′ = r

Jy := newT ()K ≡ y′ 6≈NULL ∧
V

s∈T
∀u, v(s(u, v)⇒ u 6≈ y′) ∧

V

s∈T
∀u, v

`

s′(u, v)⇔ u≈ y′ ∧ v ≈NULL ∨ s(u, v)
´

∧
V

c∈c̄\{y} c
′ ≈ c ∧

V

r∈r̄\T r
′ = r

Figure 2: Semantics of actions. Note that the second-order equalities r ′ = r are to
be understood as abbreviations for first-order formulas ∀u, v

(

r′(u, v)⇔ r(u, v)
)

.

defined value of the r-field of that instance. Note that the universe of the first-order
structures can be assumed finite since the number of heap addresses is finite (yet
unbounded).

Formally, we associate a vocabulary σ to a program P , where σ = 〈r̄, c̄〉 de-
clares a set of binary relation symbols r̄ and a set of constants c̄. Hereby, c̄ is the
set of program variables occurring in the control flow graph of P , and r̄ is the
set of fields occurring in the struct declaration of P . A σ-structure A is a tuple
〈A, r̄A, c̄A〉, where A is a non-empty universe, r̄A = {rA | r ∈ r̄} is a set of
binary relations on A interpreting the symbols in r̄, and c̄A = {cA | c ∈ c̄} is a
set of elements of A interpreting the constants in c̄. A state of the program P is a
pair 〈`,A〉 consisting of a location ` and a σ-structure A. We require that the uni-
verse A is finite and that all relations rA are functional, i. e., for all a, b, b′ ∈ A, if
rA(a, b) and rA(a, b′) then b = b′. Additionally, we require that the interpretation
of NULL is a dangling pointer, i. e., rA(NULLA, b) is false for all b ∈ A and all
relations rA.

Transitions are certain pairs of states. For specifying which pairs, we have to
extend the vocabulary σ. We define σ′ = 〈r̄′, c̄′〉 to be a copy of σ, where r̄′ = {r′ |
r ∈ r̄} and c̄′ = {c′ | c ∈ c̄}. By σ + σ′, we denote the union of the vocabularies
σ and σ′. Given a σ-structure A, we denote the corresponding σ ′-structure (with
universe A) by A

′. Thus, given σ-structures A and B with A = B, A + B
′ can

be viewed as a (σ + σ′)-structure. Likewise, a (σ + σ′)-formula can be viewed
as defining a binary relation on σ-structures. Figure 2 specifies the semantics of
actions α as (σ + σ′)-formulas JαK.

A transition of the program P is pair
〈

〈`,A〉, 〈`′,B〉
〉

of states such that A =
B and A+B

′ |= JαK, where the action α is the label of some edge from ` to `′ in the
CFG of P . We call 〈`,A〉 the pre-state and 〈`′,B〉 the post-state of the transition.
Note that Jy := s(x)K is false if x is dangling, i. e., the semantics models read
dereferences of dangling pointers by deadlock. On the other hand, Jy := new T ()K
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defines a total relation, so allocation never fails due to lack of memory.1

Given a path π = 〈`0, α1, `1, . . . , αn, `n〉 in the CFG, we call a sequence of
states

〈

〈`0,A0〉, 〈`1,A1〉, . . . , 〈`n,An〉
〉

a π-execution (of length n) if for 1 ≤ i ≤
n,

〈

〈`i−1,Ai−1〉, 〈`i,Ai〉
〉

is a transition. We call `n π-reachable from 〈`0,A0〉 if
there is a π-execution

〈

〈`0,A0〉, . . . , 〈`n,An〉
〉

. In general, we call a location `′

reachable from a state 〈`,A〉 if there is a path π such that `′ is π-reachable from
〈`,A〉.

2.3 Error Conditions

Run time errors in pointer programs occur when dereferencing dangling pointers
or NULL pointers, or when freeing memory that is not allocated. We can check for
such errors by introducing error conditions into the control flow graph just before
the dangerous actions read, write and deallocate. As expressing the error conditions
requires quantifiers, we have to allow more complex conditions in assume-actions.

Let P be a program and let σ be its associated vocabulary. We say that a σ-
formula ϕ (of first-order logic with equality) is in the Bernays-Schönfinkel class [3,
20] with n variables2 , denoted by ϕ ∈ BSn, if ϕ is equivalent to a sentence
∃u1, . . . , um∀v1, . . . , vn ψ, where ψ is quantifier-free. For expressing error con-
ditions, we admit actions assume(γ) where γ ∈ BS n for n ≥ 0.

We extend the CFG of the program P to a CFG with error conditions (ECFG)
in the following way. We introduce a new distinguished location error . For ev-
ery edge from ` to `′ that is labeled by y := s(x) or s(x) := e, we add an edge
from ` to error labeled by assume(∀v ¬ s(x, v)). And for every edge from ` to
`′ labeled by freeT (x) and every r ∈ T , we add an edge from ` to error labeled
by assume(∀v ¬ r(x, v)). Note that the error condition ∀v ¬ s(x, v) for the read-
and write-actions is true if and only if the pointer x is dangling, i. e., there is no
value for the s-field at address x. This condition also captures NULL dereferences
since we assume the special address NULL to be a dangling pointer. For deallo-
cation, the error conditions ∀v ¬ r(x, v) are true if and only if there is no instance
of T at address x, e. g., because it has been deallocated earlier. Note that all error
conditions are in BS 1.

2.4 Weakest Preconditions

Let P be a program and let σ be the associated vocabulary. Given an action α and
a σ-formula ϕ, informally the weakest precondition of ϕ w. r. t. α captures those
states which upon execution of α may lead to a state satisfying ϕ. Formally, the
weakest precondition pre(α;ϕ) is defined as

pre(α;ϕ) ≡ ∃r̄′∃c̄′
(

JαK ∧ ϕ[r̄′/r̄][c̄′/c̄]
)

.

1A slightly modified version of Jy := newT ()K models failed allocation by returning NULL, see
appendix B.

2We count only universally quantified variables; the other variables can be viewed as constants.
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Here, ϕ[r̄′/r̄][c̄′/c̄] is an abbreviation for ϕ[r′1/r1, . . . , r
′
m/rm][c′1/c1, . . . , c

′
n/cn]

where r̄ = {r1, . . . , rm} and c̄ = {c1, . . . , cn}, i. e., ϕ[r̄′/r̄][c̄′/c̄] is the formula
obtained from ϕ by replacing every relation symbol r by r ′ and every constant c by
c′. Further, ∃r̄′∃c̄′ denotes the existential quantification of all relation symbols r ′

and all constants3 c′. Note that pre(α;ϕ) is a second-order formula due to quantifi-
cation over relations. Given a path π in the CFG of P and a σ-formula ϕ, we define
the weakest precondition pre(π;ϕ) of ϕ w. r. t. π in the usual way by induction on
the length of π.

Depending on the actions α, we can rewrite the second-order formula pre(α;ϕ)
to an equivalent first-order formula. We need to extended our notion of substitution
to allow for the substitution of atomic formulas. Given two formulas ϕ and ψ and
an atomic formula r(u1, u2) with free variables ui, we write ϕ[ψ/r(u1, u2)] for
the formula obtained from ϕ by replacing every atomic formula r(t1, t2) by the
formula ψ[t1/u1, t2/u2], where the ti are arbitrary terms. Note that the variables
ui just function as parameters for the terms ti.

Lemma 1. Given a σ-formula ϕ and an action α, we have the following charac-
terization of pre(α;ϕ), where T is a template, s̄ = {s1, . . . , sn} are the fields of
T , s is an arbitrary field, x and y are program variables, e is a program variable
or constant (including NULL), and γ is a σ-formula.

pre(assume(γ);ϕ) ≡ γ ∧ ϕ

pre(y := e;ϕ) ≡ ϕ[e/y]

pre(y := s(x);ϕ) ≡ ∃y′
(

s(x, y′) ∧ ϕ[y′/y]
)

pre(s(x) := e;ϕ) ≡ ϕ[u≈ x ∧ v ≈ e ∨ u 6≈ x ∧ s(u, v)/s(u, v)]

pre(freeT (x);ϕ) ≡ ϕ[u 6≈ x ∧ s̄(u, v)/s̄(u, v)]4

pre(y := newT ();ϕ) ≡ ∃y′
(

y′ 6≈NULL ∧
∧

s∈s̄ ∀u, v(s(u, v)⇒ u 6≈ y′) ∧
ϕ[y′/y][u≈ y′ ∧ v ≈NULL ∨ s̄(u, v)/s̄(u, v)]

)

Proof. See appendix A.

Lemma 2. Let P be a program, π a path in the ECFG and ϕ a σ-formula. If
ϕ ∈ BSn, n ≥ 2, then pre(π;ϕ) ∈ BSn. Moreover, the size of pre(π;ϕ) is in
O(|π|2 · |ϕ|), and the length of the quantifier prefix of pre(π;ϕ) is in O(|π|+ |ϕ|).

Proof. Follows from Lemma 1 once we note that all conditions are in BS 1 and the
class BSn is closed under outermost existential quantification, under conjunction,
under substitution of terms for variables and under substitution of quantifier-free
formulas for atomic ones. Note that the restriction n ≥ 2 is enforced by the weakest
preconditions for allocation actions.

It is easy to see the quantifier prefix grows linearly in the length of π. Note
that the number of non-equality atoms (which is increased only by read access and

3We quantify over constants as if they were free variables.
4We consider a formula like ϕ[u 6≈ x ∧ s̄(u, v)/s̄(u, v)] to be an abbreviation for the formula

ϕ[u 6≈ x ∧ s1(u, v)/s1(u, v)] . . . [u 6≈ x ∧ sn(u, v)/sn(u, v)].
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allocation) also grows linearly. However, in each step, substituting O(|π|) non-
equality atoms may increase the number of equality atoms by O(|π|), so the total
growth is quadratic.

2.5 Initial Conditions

Using weakest preconditions, we can propagate an error condition backwards along
a given error path π = 〈init , . . . , error 〉 and obtain a condition pre(π;>) express-
ing precisely when the error location is π-reachable from init . Due to Lemma 2
and the decidability of the Bernays-Schönfinkel class, we can thus decide whether
there is some state 〈init ,A〉 from which error is π-reachable. However, there may
be many such states which are irrelevant since they do not satisfy certain initial
conditions that we want to impose, e. g., that program variable e points to a doubly
linked circular list. Such properties are not expressible in first-order logic, how-
ever, list or tree structures, even certain circular ones, can be specified by logic
programs. We will express initial conditions as conjunctions φ ∧ P ∧ Q , where φ
is a σ-formula in the Bernays-Schönfinkel class with 2 variables, P is a (restricted)
monadic Datalog program and Q is a (ground) query. The use of Datalog allows
us, without losing decidability, to express initial data structures of arbitrary size
(expressing reachability of all memory cells in such structures usually requires the
use of some kind of transitive closure, which often leads to undecidability.) The
Datalog program P will be interpreted over models of φ and will extend them with
unary relations, hence the extensional database (EDB) vocabulary is σ = 〈r̄, c̄〉,
and the intensional database (IDB) vocabulary σI = 〈p̄〉 declares a set of unary
predicates p̄.

A monadic Datalog program P is a finite set of clauses A0 ← A1, . . . , Ak,
k ≥ 0, where the head A0 is a unary IDB atom and the body A1, . . . , Ak is a
conjunction of IDB atoms and EDB literals (i. e., possibly negated EDB atoms).
A query Q is a conjunction A1, . . . , Ak, k ≥ 0, of ground IDB atoms (i. e., IDB
atoms of the form p(c)). Note that we consider the order of the atoms in queries
and clause bodies irrelevant. In section 3, we will impose further restrictions on
monadic Datalog programs in order to prove a decidability result.

Let P be a monadic Datalog program. Given an EDB (i. e., a σ-structure) A,
the least model of P over A is the least extension of A to a (σ + σI )-structure B

such that B is a model of the clause set P . Given a σ-formula φ and a query Q , we
say that A satisfies φ ∧ P ∧ Q , denoted by A |= φ ∧ P ∧ Q , if A is a model
of φ and the least model of P over A is a model of Q . In section 3, we will show
that satisfiability of φ ∧ P ∧ Q is decidable, provided that φ is in BS 2 and P is a
restricted monadic Datalog program.

Figure 1 shows the initial condition φ ∧ P ∧ cl(e) for a program operating
on a circular doubly linked list. The monadic Datalog program P together with
the query cl(e) ensure that e points to a circular list linked via the next-fields.
The axiom φ ensures that the binary relation prev is the converse of next, so
the circular list is doubly linked. Furthermore, φ ensures that the address NULL
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is a dangling pointer. Note that φ can not ensure functionality of next and prev,
because functionality is not expressible in BS 2. Therefore, we need a semantic
restriction on σ-structures, i. e., we will only consider σ-structures where all binary
relations are functional.

2.6 The Bounded Model Checking Problem

Let P be a program. Informally, we call P pointer-safe if there is no initial state
from which execution of P can result in a runtime error by dereferencing NULL

or a dangling pointer. To define pointer-safety formally, we assume that the initial
conditions of P are given as a conjunction φ ∧ P ∧ Q , where φ is a BS 2-formula,
P a monadic Datalog program and Q a query. We call P pointer-safe if for all
states 〈init ,A〉 such that A |= φ ∧ P ∧ Q , the location error is unreachable
from 〈init ,A〉 in the ECFG. In bounded model checking, we do not solve the full
reachability problem but restrict to paths of an a priori bounded length. Since there
are only finitely many such bounded paths in the ECFG, for showing decidability of
the bounded model checking problem it suffices to restrict to one path. We call an
ECFG-path π = 〈init , . . . , error 〉 pointer-safe if for all A with A |= φ ∧ P ∧ Q ,
error is not π-reachable from 〈init ,A〉.

Theorem 3. Let P be a program with initial condition φ ∧ P ∧ Q , where φ is a
BS 2-formula, P a Datalog program and Q a query. Let π = 〈init , . . . , error 〉 be
an ECFG-path of P . It is decidable whether π is pointer-safe.

Proof. The path π is pointer-safe if and only if pre(π;>) ∧ φ ∧ P ∧ Q is unsat-
isfiable. As pre(π;>) ∧ φ ∈ BS 2 by assumption and Lemma 2, the decidability
follows from Theorem 8 in section 3.

For the complexity of bounded model checking, we refer to section 3.3.
It turns out that the program from figure 1 is not pointer-safe. Consider the path

π = 〈init , ne := next(e), `1, . . . , `6, assume(∀v ¬ next(pe, v)), error 〉. Since
the formula pre(π;>) ∧ φ ∧ P ∧ Q is satisfiable, the program can crash when
executing the last but one action next(pe) := e. An analysis of the models of
pre(π;>) ∧ φ ∧ P ∧ Q reveals the reason: If e points to a circular list of length
1 then pe≈ e after the second action, so pe is dangling after free cl(e).

3 Deciding the Bernays-Schönfinkel Class with Datalog

In this section, we develop our main result, the decidability of the 2-variable frag-
ment of the Bernays-Schönfinkel class extended by a class of monadic Datalog
programs.

3.1 Syntax and Semantics of Bernays-Schönfinkel with Datalog

We are interested in satisfiability of formulas of the form φ ∧ P ∧ Q , where

8



• φ is a universal σ-formula in BS 2 (see section 2.3), i. e., φ is of the form
∀u, v ψ with ψ quantifier-free,5

• P is a monadic Datalog program with EDB vocabulary σ and IDB vocabu-
lary σI (see section 2.5), and

• Q a query (see section 2.5).

We are not interested in general satisfiability of φ ∧ P ∧ Q but we impose two
additional restrictions on models A. One restriction is motivated by the fact that
we model pointer structures (see section 2.2), the other is used in our decidability
proof.

Functionality. We require that all binary relations are functional, i. e., for all
EDB predicates r, A must be a model of ∀u, v1, v2

(

r(u, v1) ∧ r(u, v2)⇒ v1≈v2
)

.
This ensures that A represents a pointer structure, which is functional graph since
every pointer at any given moment points to at most one heap cell.

Non-Sharing. We require that the binary relations occurring in P repre-
sent pointers in data structures that do not share memory with other data
structures defined by P . That is, A must be a model of all sentences of
the form ∀u1, u2, v

(

s1(u1, v) ∧ s1(u2, v) ∧ u1 6≈ u2 ⇒ const(v)
)

and
∀u1, u2, v

(

s1(u1, v) ∧ s2(u2, v) ⇒ const(v)
)

, where s1 and s2 are two distinct
EDB predicates occurring in P and const(v) is a shorthand for the disjunction
∨

c∈c̄ v≈ c. Note that the non-sharing restriction is not imposed on all binary pred-
icates but just on the ones occurring in the Datalog program P .

Obviously, the functionality and non-sharing restrictions are expressible in the
Bernays-Schönfinkel class with equality. However, they require more than two
variables, so we cannot add them to the formula φ but must deal with them on
the semantic level.

Besides restrictions on the class of models, we need to impose two restrictions
on monadic Datalog programs P . We call P tree-automaton-like (TA-like for short)
if all clauses are of the form

p(u)← B1, . . . , Bl, r1(u, v1), q1(v1), . . . , rk(u, vk), qk(vk) (1)

for some k, l ≥ 0, where u, v1, . . . , vk are k + 1 distinct variables, r1, . . . , rk
are k distinct relation symbols, and the Bi are EDB literals containing at most the
variable u. We define the degree of a clause of the form (1) to be the natural number
k, i. e., the number of IDB atoms in the body. The degree of a TA-like monadic
Datalog program is the maximal degree of its clauses. We call P intersection-
free if for all EDBs A, the least model of P over A satisfies all sentences of the
form ∀v

(

p(v) ∧ q(v) ⇒ const(v)
)

, where p and q are two distinct IDB predicate
symbols. Note that the EDBs are σ-structures satisfying the above functionality
and non-sharing restrictions. Viewing the IDB predicates as shape types for heap

5We handle non-universal formulas φ = ∃z1, . . . , zn ∀x, y ψ ∈ BS 2 by extending the vocabu-
lary σ = 〈r̄, c̄〉, adding the variables zi as constants.
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list(u)← u≈NULL.
list(u)← next(u, v), list(v).

dll(u)← u≈ lst, next(u,NULL).
dll(u)← next(u, v), dll(v).

ring(u)← u≈ p, next(u, v), ring′(v).
ring′(u)← u≈ p.
ring

′(u)← next(u, v), ring′(v).

tree(u)← u ≈NULL.
tree(u)← left(u, v), right(u,w),

tree(v), tree(w).

gtree(u)← u ≈NULL.
gtree(u)← sons(u, v), gtrees(v).
gtrees(u)← u ≈NULL.
gtrees(u)← tree(u, v), gtree(v),

next(u,w), gtrees(w).

prev(fst,NULL) ∧ ∀u, v
`

u ≈NULL ∨ v ≈NULL ∨ (prev(u, v)⇔ next(v, u))
´

∀u, v
`

u ≈NULL ∨ v ≈NULL ∨ (up(u, v)⇔ left(v, u) ∨ right(v, u))
´

Figure 3: Datalog programs P and axioms φ representing initial conditions.

cells, an intersection-free Datalog program associates to most heap cells only one
shape type; i. e., there is no intersection of shape types (except for cells pointed to
by program variables).

Besides the model-theoretic semantics from section 2.5 there is a proof the-
oretic semantics for Datalog programs. For simplicity, we will define the proof-
theoretic semantics only for TA-like monadic Datalog programs P . Let A be an
EDB, i. e., a σ-structure. A fact p(a) consists of an IDB predicate symbol p and an
element a ∈ A. We say that a list of facts q1(a1), . . . , qk(ak), k ≥ 0, produces a
fact p(a) (w. r. t. P and A) if P contains a clause

p(u)← B1, . . . , Bl, r1(u, v1), q1(v1), . . . , rk(u, vk), qk(vk)

such that A satisfies all literals ri(u, vi) and Bj when interpreting the variables
u, v1, . . . , vk by a, a1, . . . , ak, respectively. A proof tree T for P w. r. t. A is an
ordered tree where each node is labeled by a fact. Depending on the situation, we
call a node nwhich is labeled by p(a) an a-node, a p-node or a p(a)-node. For each
p(a)-node n in T with k sons n1, . . . , nk, k ≥ 0, labeled by qi(ai), we require that
the list of facts q1(a1), . . . , qk(ak) produces the fact p(a) w. r. t. P and A. The
proof tree T proves a ground IDB atom p(c) if its root is labeled by the fact p(cA).
The proof- resp. model-theoretic semantics are linked in that the least model of P
over A satisfies a ground IDB atom p(c) if and only if p(c) is proven by some proof
tree T . Note that for all facts p(a), we can w. l. o. g. assume that all p(a)-subtrees
of a proof tree (i. e., all subtrees rooted at p(a)-nodes) are isomorphic.

Figure 3 shows examples of monadic Datalog programs P and BS 2 axioms φ
that represent several initial conditions. The initial condition “the program variable
p points to a list” can be expressed by the formula P ∧ list(p) where P is
the first of the programs on figure 3. The condition “the program variables fst

and lst point to the first and the last elements of a doubly linked list” can be
expressed by the formula φ ∧ P ∧ dll(fst) where P is the second program
and φ is the first of the axioms. Here, an atom dll(u) expresses that u points to a
doubly linked list whose last element is pointed by lst; note that lst (unlike u)
is a logical constant. The condition “p points to a binary tree” can be expressed by
P ∧ tree(p). In the same way as for doubly linked lists, one may add an axiom
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(the second one on figure 3) defining a predicate up to obtain a doubly linked binary
tree. The condition “p points to a singly linked circular list” can be expressed by
P ∧ ring(p) where the Datalog program P defines two IDB predicates ring and
ring′. The corresponding doubly linked circular list can also be defined, as was
shown in figure 1. In the last example, general (i. e., arbitrarily branching) singly
linked trees can be handled by representing them as trees of lists, i. e., every tree
node points (via sons) to a list of sons (singly linked via next), each node of which
points to a tree node (via tree). The condition “p points to a arbitrarily branching
tree” can be expressed by P ∧ gtree(p).

Note that all these monadic Datalog programs are TA-like and intersection-free,
even if they are appear together in one initial condition (provided that the predicate
next is renamed to list next, dll next, ring next and gtrees next, respec-
tively).

3.2 Decidability of Bernays-Schönfinkel with Datalog

In this section we prove that satisfiability of formulas of the form φ ∧ P ∧ Q is
decidable, where φ is a universal σ-formula in BS 2, P is a TA-like intersection-
free monadic Datalog program and Q is a query. This is done by showing the small
model property for these formulas: Every satisfiable formula has a model of size
bounded by a function depending only on the formula. Before we prove this we
recall some definitions and lemmas.

Finite model property. The proof of the following well-known lemma can be
found in [7], for instance.

Lemma 4. Let φ be a universal σ-formula in the Bernays-Schönfinkel class with
equality. If A |= φ and B is obtained from A by removing from its universe any
number of elements not interpreting constants then B |= φ.

The above lemma immediately gives us a finite model property for formulas of
the form φ ∧ P ∧ Q with Q = q1(c1), . . . , qk(ck). It is enough to take any model
A of φ and any k proof trees Ti proving qi(ci) and restrict A to the interpretations
of constants and to the elements that occur in the proof trees Ti.

Corollary 5. Every satisfiable formula of the form φ ∧ P ∧ Q has a finite model.

Types. Recall the EDB vocabulary σ = 〈r̄, c̄〉. Let u and v be variables. A 1-
atom α(u) is an atomic σ-formula containing at most the variable u, i. e., α(u)
is a ground atom or it is of the form u ≈ u, u ≈ c, r(u, u), r(u, c) or r(c, u) for
c ∈ c̄ and r ∈ r̄; likewise we define 1-atoms α(v). A 2-atom α(u, v) is an atomic
σ-formula containing at most the variables u and v, i. e., α(u, v) is a 1-atom or it
is of the form u ≈ v, r(u, v) or r(v, u) for r ∈ r̄. A 1-literal (resp. 2-literal) is a
possibly negated 1-atom (resp. 2-atom). A 1-type τ(u) (resp. τ(v)) is a maximal
propositionally consistent conjunction of 1-literals, i. e., all possible 1-atoms α(u)
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(resp. α(v)) occur exactly once in the conjunction τ(u) (resp. τ(v)). Similarly,
a 2-type τ(u, v) is a maximal propositionally consistent conjunction of 2-literals.
Note that there are only finitely many different types: the number of 1-types is
2(|c̄|+1)2(|r̄|+1) and the number of 2-types is 2(|c̄|+2)2(|r̄|+1).

In a given σ-structure A, for every element a ∈ A there is exactly one 1-type
τ(u) that is true when one assigns a to the variable u; we denote this type τ(u)
by τA(a). Likewise, for every two elements a, b ∈ A there is exactly one 2-type
τ(u, v), denoted by τA(a, b), that is true when one assigns a to u and b to v. Note
that for a, a′, b, b′ ∈ A, the 2-type equality τA(a, b) = τA(a′, b′) implies the 1-
type equalities τA(a) = τA(a′) and τA(b) = τA(b′). A type τ(u) resp. τ(u, v)
is inhabited in A if we have τ(u) = τA(a) resp. τ(u, v) = τA(a, b) for some
a, b ∈ A. In general, not all types are inhabited in a fixed σ-structure A, e. g., if
A interprets the constants c1 and c2 by different elements, no type containing the
conjuncts u≈ c1 and u≈ c2 can be inhabited. Therefore, (|c̄|+ 1) · 2(|c̄|+1)2|r̄| resp.
(|c̄|2 + 2|c̄|+ 2) · 2(|c̄|+2)2|r̄| is an upper bound on the number of inhabited 1- resp.
2-types.

In bounded branching structures, we can get a tighter bound on the number
of inhabited types. We say that a σ-structure A is k-branching, k ≥ 0, if for all
r ∈ r̄, every a ∈ A which is not interpreting a constant has at most k predecessors
and k successors w. r. t. the relation rA. If A is k-branching then the number of
inhabited 1-types is bounded by |c̄| + ((|c̄| + 1)2k + 1)|r̄|, because there are |c̄|
types inhabited by elements interpreting constants, and for the types inhabited by
the other elements each binary predicate r contributes at most (|c̄|+1)k possibilities
due to predecessors, (|c̄| + 1)k due to successors and one due to the self loop.
Similarly, the number of inhabited 2-types is bounded by |c̄|2 + 2|c̄|((|c̄|+ 1)2k +
3)|r̄| + ((|c̄|+ 1)4k + 4)|r̄|.

Lemma 6. The number of 2-types inhabited in a σ-structure A is bounded by a
function singly exponential in the size of the vocabulary σ. If A is k-branching,
k ≥ 0, then the bound on the number of inhabited 2-types is exponential in k and
in the number of binary relations but polynomial in the number of constants.

Pumping Lemma. The core of our decidability result is the following tech-
nical lemma which “pumps down” big proof trees by compressing long paths,
thus bounding the depth of proof trees. With the bound, the small model theo-
rem follows easily. Recall the EDB vocabulary σ = 〈r̄, c̄〉 and the IDB vocabulary
σI = 〈p̄〉.

Lemma 7. If a formula of the form φ ∧ P ∧ Q is satisfiable then it is satisfiable
by a σ-structure A such that all IDB atoms q(c) in the query Q have proof trees of
depth bounded by

|p̄||c̄|+ |p̄||c̄| · (θ · |p̄| · δ + 1), (2)

where δ is the degree of P , and θ is the maximal number of inhabited 2-types in
models of φ ∧ P ∧ Q .
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Proof. Let A be a model of the formula φ ∧ P ∧ Q , i. e., A is a model of φ and
there is a finite set T of proof trees for P w. r. t. A such that each tree T ∈ T
proves one query atom in Q . By Lemma 4 we can assume that every element in
the universe A either interprets some constant c ∈ c̄ or occurs in some proof tree
T ∈ Ts. Note that for all facts p(a), we can w. l. o. g. assume that all p(a)-subtrees,
i. e., all subtrees rooted at p(a)-nodes, of proof trees in T are isomorphic.

Suppose there is a path of length greater than (2) in some proof tree T ∈ T .
The first node on that path, the root of T , is a constant node, i. e., it is a p(a)-node
for some IDB predicate p ∈ p̄ and some a ∈ A interpreting a constant c ∈ c̄. The
constant nodes, of which there are at most |p̄||c̄| on the path (recall that no fact p(a)
repeats on a path), divide the path into up to |p̄||c̄| segments of non-constant nodes.
Choose such a segment of non-constant nodes which is of maximal length, i. e., its
length is greater than θ · |p̄| · δ + 1. Drop the first node from the chosen segment
and denote the remaining segment by π, so |π| > θ · |p̄| · δ. To every node n of
π, we associate a 2-type, written τA(n), which is defined by τA(n) = τA(a, b)
where a, b ∈ A such that n is a b-node and the father of n in T is an a-node. Since
there are at most θ 2-types inhabited in A, there exist a 2-type τ(u, v) and a set
Nτ of nodes on π such τA(n) = τ(u, v) for all n ∈ Nτ and |Nτ | > |p̄| · δ. There
exist an IDB predicate q ∈ p̄ and a subset Nτ,q ⊆ Nτ such that all n ∈ Nτ,q are
q-nodes and |Nτ,q| > δ. Let n ∈ Nτ,q be the node which is closest to the root of
T , and let m be the father of n in T . Since m has at most δ sons, there exists a
node n′ ∈ Nτ,q, labeled by some fact q(a), such that no son of m is an a-node.
Let m′ be the father of n′ in T , and let d, e, d′, e′ ∈ A be the elements labeling the
nodes m, n, m′ and n′, respectively. Note that the four elements d, e, d′ and e′ are
pairwise distinct because they are not interpreting constants, and in a proof tree of
an intersection-free Datalog program such elements cannot repeat on a path.

To summarize, the proof tree T ∈ T contains two father-son pairs 〈m,n〉
and 〈m′, n′〉 on one path, with m being closer to the root than m′, such that the
following properties hold:

1. The nodes m, n, m′ and n′ are non-constant nodes and there is no constant
node between them.

2. The elements d, e, d′, e′ ∈ A labeling the respective nodes m, n, m′ and n′

are pairwise distinct.

3. The 2-types of the elements d, e and d′, e′ coincide, i. e., the type quality
τA(d, e) = τA(d′, e′) holds.

4. The nodes n and n′ are labeled by the same IDB-predicate q.

5. The node m does not have an e′-son.

As m is the father of n (and assuming that n is the i-th son), there is a clause
C = p(u)← . . . , ri(u, vi), qi(vi), . . . in P such that qi = q and rAi (d, e). In order
to decrease the size (and eventually the depth) of the proof tree T , we remove
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from it the q(e)-subtree rooted at n and put the q(e′)-subtree rooted at n′ at its
place. We do the same replacement in all proof trees in T at all q(e)-nodes, i. e.,
we replace every q(e)-subtree by its q(e′)-subtree; recall that all q(e)-subtrees are
isomorphic, so each has a q(e′)-subtree. Call the resulting set of trees T ′. Note that
these replacements necessarily happen below p(d)-nodes because every q(e)-node
is a son of a p(d)-node. The reason for this is the non-sharing restriction, which
implies that there is no predicate s occurring in P and no element a ∈ A other than
d such that sA(a, e) holds, so every e-node must be the son a d-node. Below we
will check that the new trees in T ′ are valid proof trees, which basically involves
checking that the above clause C is satisfied at p(d)-nodes. However, for this to
hold, we first have to update the model A in such a way that rAi (d, e′) becomes
true while the updated model stays a model of φ.

Call the updated model B. As the universe of B we take a subset B ⊆ A
such that every element in B interprets a constant or labels a node in one of the
trees in T . The interpretation of the constants does not change, i. e., cA = cB for
all constants c. We define the interpretation of each binary predicate s in B such
that sB(d, e′) iff sA(d, e) and sB(e′, d) iff sA(e, d), and for all a, b ∈ B with
{a, b} 6= {d, e′}, we define sB(a, b) iff sA(a, b). That is, B relates d and e′ in the
same way than A relates d and e, otherwise the interpretations do not differ.

Note that the element e is no longer in B since it does not interpret a constant
and has been eliminated from all proof trees. The latter is case because all q(e)-
nodes have been eliminated, and no tree in T contains any other e-node since
P is intersection-free. Also, the element d′ is no longer in B. To see this, let
a0, a1, . . . , al denote the elements labeling the nodes from n to m′ in the old proof
tree T , i. e., a0 = e and al = d′. Let r1, . . . , rl be a sequence of EDB predicates
occurring in the program P such that rAj (aj−1, aj) for 1 ≤ j ≤ l; by construction
of the proof tree T such a sequence of predicates exists. Because of the non-sharing
restriction, for 1 ≤ j ≤ l, there is no predicate s occurring in P and no element
a ∈ A other than aj−1 such that sA(a, aj) holds. Thus, each aj can only occur in
one of the new proof trees if aj−1 does occur. As a0 = e has been eliminated, all
the other aj are eliminated as well, in particular we have d′ = al /∈ B.

We have to show that the new model B satisfies the functionality restriction.
Assume that s is a binary predicate. The critical cases for s to satisfy the function-
ality restriction ∀u, v1, v2

(

s(u, v1) ∧ s(u, v2)⇒ v1≈v2
)

in B are those involving
the new edges between d and e′. There are two such cases.

• Assume sB(d, e′) and sB(d, b) for some b ∈ B. Towards a contradiction as-
sume that e′ 6= b. By construction of B, we have sA(d, e) and sA(d, b). Due
to functionality in A, this implies b = e, which is a contradiction because
e /∈ B.

• Assume sB(e′, d) and sB(e′, b) for some b ∈ B. Towards a contradiction as-
sume that d 6= b. By construction, we have sA(e, d) and sA(e′, b). However,
since 〈d, e〉 and 〈d′, e′〉 inhabit the same 2-type, we have also sA(e′, d′). Due
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to functionality in A, this implies b = d′, which is a contradiction because
d′ /∈ B.

Next, we have to show that B satisfies the non-sharing restriction. Assume that
s is a binary predicate occurring in P . The critical cases for s to satisfy the first
non-sharing restriction ∀u1, u2, v

(

s(u1, v) ∧ s(u2, v) ∧ u1 6≈ u2 ⇒ const(v)
)

in
B are those involving the new edges between d and e′. Potentially there are two
such cases, but we will show that each one leads to a contradiction.

• Assume sB(d, e′) and sB(b, e′) and d 6= b for some b ∈ B. By construction
of B, we have sA(d, e) and sA(b, e′). However, since 〈d, e〉 and 〈d′, e′〉 in-
habit the same 2-type, we have also sA(d′, e′) and d′ 6= b because d′ /∈ B.
Due to non-sharing in A, e′ must interpret a constant, which contradicts n′

being a non-constant node.

• Assume sB(e′, d) and sB(b, d) and e′ 6= b for some b ∈ B. By construction,
we have sA(e, d) and sA(b, d). Due to non-sharing in A, d must interpret a
constant, which contradicts m being a non-constant node.

Now assume that s1, s2 are two distinct binary predicates occurring in P .
The critical cases for s1 and s2 to satisfy the second non-sharing restriction
∀u1, u2, v

(

s1(u1, v) ∧ s2(u2, v) ⇒ const(v)
)

in B are those involving the new
edges between d and e′. As s1 and s2 are symmetric in the non-sharing restriction,
there are two such cases.

• Assume sB1 (d, e′) and sB2 (b, e′) for some b ∈ B.

– If d = b then by construction of B, we have sA1 (d, e) and sA2 (d, e),
which due to non-sharing in A implies that e must interpret a constant.
This contradicts n being a non-constant node.

– If d 6= b then we have sA1 (d, e) and sA2 (b, e′). However, since 〈d, e〉
and 〈d′, e′〉 inhabit the same 2-type, we have also sA1 (d′, e′), which
due to non-sharing in A implies that e′ must interpret a constant. This
contradicts n′ being a non-constant node.

• Assume sB1 (e′, d) and sB2 (b, d) for some b ∈ B. By construction of B, we
have sA1 (e, d). Moreover, if e′ = b then we have sA2 (e, d), otherwise we have
sA2 (b, d). In any case, d must interpret a constant due to non-sharing in A.
This contradicts m being a non-constant node.

Next, we have to show that the new model B still satisfies the universal BS 2-
formula φ. Let φ = ∀u, v ψ for some quantifier-free formula ψ. W. l. o. g. we can
assume ψ consists only of ground literals and literals of the form [¬]z ≈ c, [¬]u≈
v, [¬]s(z, z), [¬]s(z, c), [¬]s(c, z), [¬]s(u, v) and [¬]s(v, u) for constants c ∈ c̄,
binary relations s ∈ r̄ and variables z ∈ {u, v}. We have to show that ψ evaluates
to true in B under all assignments β of the variables u and v to elements of the
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universe of B. As the models A and B only differ in the relations between the
elements d and e′ (recall that e is no longer in B), ψ obviously evaluates to true
as long as the image of β is not {d, e′}. Consider the critical assignment β with
β(u) = d and β(v) = e′. (Since u and v are symmetric in the literals, this also
covers the other critical assignment γ with γ(u) = e′ and γ(v) = d.) We will show
ψ still evaluates to true in B because each literal evaluates in B under β the same
as in A under the assignment β ′ with β′(u) = d and β ′(v) = e.

• Ground literals evaluate the same in B and in A (regardless of the assign-
ments) because A and B agree on the interpretation of the constants and the
relations between them.

• Literals of the form [¬]u ≈ c, [¬]s(u, u), [¬]s(u, c) and [¬]s(c, u) evaluate
the same in B under β and in A under β ′ because A and B agree on the
relations between d and constants and between d and itself.

• Literals of the form [¬]v ≈ c, [¬]s(v, v), [¬]s(v, c) and [¬]s(c, v) evaluate
the same in B under β and in A under β ′ because τB(e′) = τA(e′) = τA(e).
The first equality holds because A and B agree on the relations between e′

and constants and between e′ and itself. The second equality is implied by
the 2-type equality τA(d, e) = τA(d′, e′).

• Literals of the form [¬]s(u, v) and [¬]s(v, u) evaluate the same in B under
β and in A under β ′ because we have sB(d, e′) iff sA(d, e) and sB(e′, d) iff
sA(e, d) by construction of B.

• Literals of the form [¬]u≈ v evaluate the same in B under β and in A under
β′ because d 6= e′ in B and d 6= e in A.

Finally, we have to show that the new trees in T ′ are in fact valid proof
trees proving the query atoms in Q . Let T ∈ T be an old proof tree for P
w. r. t. A and let T ′ ∈ T ′ be its new counterpart. Note that the roots of T and
T ′ are the same, so if T ′ is a valid proof tree it will prove the same query
atom as T . Because A and B only differ in the relations between the elements
d and e′, in order to show that T ′ is a proof tree for P w. r. t. B, it suffices to
check those d-nodes in T ′ which have an e′-son. If T ′ does not contain a d-node
there is nothing to check, so assume that T ′ contains a d-node. This implies that
T contains a d-node, which is a p(d)-node because P is intersection-free. Let
q1(a1), . . . , qk(ak) be the facts labeling the sons of such a p(d)-node; we know
that qi(ai) = q(e) because the i-th son is a q(e)-node. As T is a proof tree, the
list of facts q1(a1), . . . , qi−1(ai−1), q(e), qi+1(ai+1), . . . , qk(ak) produces the fact
p(d) (w. r. t. P and A), i. e., P contains a clause of the form

p(u)← B1, . . . , Bl, r1(u, v1), q1(v1), . . . , rk(u, vk), qk(vk)

such that A satisfies all rj(u, vj) atoms and all Bj literals when interpreting the
variables u, v1, . . . , vk by d, a1, . . . , ai−1, e, ai+1, . . . , ak, respectively. Now in T ,
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the i-th son of a p(d)-node is its only e-son, for if the j-th son, i 6= j, also was an
e-son, we would have rAi (d, e) and rAj (d, e), which contradicts to the non-sharing
restriction. Hence for showing that T ′ is a valid proof tree, we have to prove that
the list of facts q1(a1), . . . , qi−1(ai−1), q(e′), qi+1(ai+1), . . . , qk(ak), which label
the sons of a p(d)-node in T ′, produces p(d). This follows from three facts:

• For the atom ri(u, vi), rBi (d, e′) follows from rAi (d, e) by construction of B.

• For all other rj(u, vj) atoms, j 6= i, nothing changes. This is so because by
choice of d (more precisely by choice of the node determining d), a p(d)-
node in T does not have an e′-son, so aj 6= e′. It follows that we inherit
rBj (d, aj) from rAj (d, aj) because A and B agree on the relations between
d and aj .

• For all Bj literals, nothing changes because their only free variable is u and
the models A and B agree on the relations between d and constants and
between d and itself.

Obviously, the above modifications of the model A and the proof trees in T
can be performed as long as there is a proof tree whose depth is greater than (2).
This ends the proof of Lemma 7.

Theorem 8. Let φ be a universal σ-formula with 2 variables, let P be an intersec-
tion-free TA-like monadic Datalog program and let Q be a query. If the formula
φ ∧ P ∧ Q is satisfiable then it has a model of cardinality at most doubly ex-
ponential in the size of the formula. Deciding satisfiability of such formulas is in
2-NEXPTIME.

Proof. By the lemmas 7 and 6, a satisfiable formula has a model A where the
proof trees for the query atoms are bounded by a function singly exponential in the
size of the formula, so their size is at most doubly exponential. By the observation
following Lemma 4, the model A can be reduced to a model B consisting only of
interpretations of the constants and elements occurring in the proof trees.

3.3 Complexity of Bounded Model Checking

It follows from Theorem 8, that the bounded model checking problem from The-
orem 3 (see section 2.6) is in 2-NEXPTIME, because the size of the formula
pre(π;>) ∧ φ ∧ P ∧ Q is polynomial in |π| by Lemma 2. The double ex-
ponential complexity originates from two sources, the exponential bound on the
number of inhabited 2-types and the (linear) degree of the Datalog program, lead-
ing to proof trees of exponential depth and double exponential size. In common
situations, however, the complexity of bounded model checking can be improved
significantly.

In the following, we consider bounded model checking problems for a fixed
program P with a fixed initial condition φ ∧ P ∧ Q . We say that the formula
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φ ∧ P ∧ Q is a bounded branching formula if there is k ≥ 0 such that all models
of φ ∧ P ∧ Q are k-branching.

Theorem 9. Let π = 〈init , . . . , error 〉 be an ECFG-path of a program P . If
the initial condition φ ∧ P ∧ Q is a bounded branching formula then (for
fixed program and fixed initial condition) deciding whether π is pointer-safe is
in NEXPTIME. If additionally the degree of P is 1 then the problem is in NPTIME.

Proof. Assume that all models of φ ∧ P ∧ Q are k-branching for some fixed
k ≥ 0. By Lemma 2, the size of the precondition formula pre(π;>) is polynomial
in |π|, in particular the length of the existential quantifier prefix is linear in |π|.
For checking satisfiability of pre(π;>) ∧ φ ∧ P ∧ Q , we convert pre(π;>) into
a universal formula, which requires extending the EDB vocabulary σ by adding
a number (linear in |π|) of new constants. By Lemma 6, the number of inhabited
2-types in models of pre(π;>) ∧ φ ∧ P ∧ Q is polynomial in the number of
constants,6 hence polynomial in |π|. Thus, Lemma 7 yields a polynomial depth
bound for proof trees, which implies a singly exponential bound on the size of the
models. If the degree of P is 1, the polynomial depth bound implies a polynomial
size bound.

Functionality and non-sharing restrictions ensure that all initial conditions in
our examples are bounded branching formulas. The models of the initial conditions
for lists (singly or doubly linked, circular or not) and singly linked trees (binary or
general) are all 1-branching, whereas the models of the initial conditions for doubly
linked binary trees are 2-branching. Thus for all these data structures, bounded
model checking can be done in NEXPTIME, even if the program manipulates all
these data structures simultaneously. Moreover, if a program works on list data
structures only then bounded model checking can be done in NPTIME, which is
the optimal worst-case complexity for BMC of list manipulating programs.

4 Related Work

Automatic verification of pointer programs has received quite some attention re-
cently. Dynamically allocated heap memory and properties such as sharing, cyclic-
ity, and reachability in the heap have been formalized in various logical languages.

Abstraction from possibly unbounded state space to a finite model has been
studied in [15, 23, 25]. These approaches use the framework of abstract interpreta-
tion to over-approximate the set of reachable states. This is achieved by interpret-
ing program statements and properties in a 3-valued first-order logic with transitive
closure (TC). Recently there have been attempts to increase the precision of the ap-
proximation by incorporating automated theorem for classical 2-valued first-order
logic into the 3-valued setting [25].

6That the number of 2-types is exponential in k and the number of binary relations is irrelevant
because those parameters are fixed.

18



Other approaches for shape analysis use decidable extensions of first-order
fragments to reason about shape graphs. [14] proves decidable the ∃∀-fragment
with restricted occurrences of TC and deterministic TC. Unfortunately, without
severe restrictions on transitive closure, most decidable fragments of first-order
logic become undecidable [14]. In [24], the decidable guarded fixed-point logic
µGF [10] is used for shape analysis. In µGF, one can express reachability from
specified points along specified paths, but full transitive closure (i. e., reachabil-
ity between a pair of variables) is inexpressible. Moreover, µGF lacks the finite
model property [10] and becomes undecidable when functionality restrictions are
added [8].

Special syntactically defined logics for expressing reachability have been de-
signed. The reachability logic RL defined in [1] is a fragment of 2-variable first-
order logic with transitive closure and additional Boolean variables. Expressive
logics like PDL and CTL∗ can be embedded into it. Model checking for RL is
efficient, but decidability of satisfiability has not been investigated.

In order to employ decision procedures for monadic second order logic over
trees, Schwartzbach et al. model linked data structures using graph types [17, 19].
Graph types are logical representations of sets of graphs, where each graph has
a tree backbone which uniquely defines the other (tree-violating) edges. The ap-
proach is similar to ours because the Datalog proof trees can be seen as tree back-
bones. However, the two approaches differ in how to specify the tree-violating
edges. We can (but do not have to) specify global restrictions on the tree-violating
edges in a fragment of first-order logic whereas graph types specify their tree-
violating edges in a dynamic logic.

Graphs as models for software systems that contain pointers have been studied
in [18, 21] where graph logics based on C2, the 2-variable first-order logic with
counting quantifiers have been defined. These logics can also be seen as variants
of description logics [2] without fixed-points or transitive closure, hence they can
model graphs but cannot express reachability. Via translations to C2, the logics
in [18] and [21] inherit decidability [9].

The functional modal fragment of first-order logic as defined by Herzig [12] is
a target logic for mapping basic modal and description logics into the framework of
first-order logic. The good computational properties of these logic, i. e., PSPACE-
decidability and the finite model property, carry over to the functional modal frag-
ment of first-order logic. In this fragment universal and existential quantification
can be permuted [11] (i. e., ∀∃ can be exchanged by ∃∀), hence deciding satisfia-
bility can be reduced to deciding the Bernays-Schönfinkel class.

Reynolds and O’Hearn introduced separation logic [22] and a Hoare-style
proof system for local reasoning about pointer programs. In this approach, veri-
fication requires manual construction of proofs for Hoare-triplets because the logic
is undecidable. Towards more automation, in [5] a decidable fragment of separation
logic is studied. To obtain decidability expressiveness has to be sacrificed: the frag-
ment can only specify singly linked lists. On the other hand, besides satisfiability
also entailment is decidable, which is crucial for verification.
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In hardware verification, bounded model checking using propositional SAT
solvers was adopted as a standard technique almost immediately after its introduc-
tion by Biere et al. [4] in 1999. Jackson and Vaziri [16] extended SAT-based BMC
from hardware circuits to Java-like imperative programs with heap references. Es-
sentially, they translate the program specification and bounded executions of the
program to a formula in first-order logic with transitive closure, which they check
for satisfiability in small models using a SAT-solver. The use of first-order logic
with TC as a specification language is very convenient, however, SAT-checking is
only feasible on very small models, i. e., the size of the heap must be bounded a pri-
ori to only few cells. Similar approaches to SAT-based BMC of pointer programs
are pursued in [6] and [13].

5 Conclusion and Future Work

We proposed a bounded model checking procedure for programs manipulating dy-
namically allocated pointer structures of arbitrary size. The worst-case complexity
of our method is 2-NEXPTIME, but in common cases it goes down to NEXPTIME

or even to NPTIME. Our approach is based on a combination of two logics, both
of which are efficiently decidable in practice. Therefore, we hope that our algo-
rithm can be implemented (e. g., by integrating a Datalog inference engine into a
Bernays-Schönfinkel decision procedure) quite efficiently.

There are several possible directions for the future work. One of them is imple-
mentation via combination of decision procedures for Bernays-Schönfinkel class
and Datalog. Another one is investigation of further applications of our method,
e. g., in the analysis whether counterexamples generated by an abstraction-refine-
ment model checker for pointer programs are spurious. Still another direction is to
extend the applicability of the method, e. g., by releasing the non-sharing restriction
(currently we are not able to express structures like DAG representation of trees).
Further possibility is to extend our bounded model checking (which is a debugging
method) to a verification method — this requires the ability to express the negation
of initial conditions which leads to Datalog programs with greatest fixed point se-
mantics (as opposed to the least fixed point semantics considered here). Finally, we
consider the use of other decidable fragments of the first-order logic whose com-
bination with Datalog could lead to a decidable logic expressive enough for rea-
soning about pointer structures. A good candidate is C2, the 2-variable fragment of
first-order logic with counting quantifiers, in which restrictions like functionality
or non-sharing are easily expressible. As C2 is closed under negation, a Datalog
extension with greatest fixed points should also be well suited for verification of
invariants.
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A Weakest Preconditions Expressed in First-Order Logic

This appendix is devoted to the proof of Lemma 1. For convenience, we state it
again.

Lemma 1. Given a σ-formula ϕ and an action α, we have the following charac-
terization of pre(α;ϕ), where T is a template, s̄ = {s1, . . . , sn} are the fields of
T , s is an arbitrary field, x and y are program variables, e is a program variable
or constant (including NULL), and γ is a σ-formula.

pre(assume(γ);ϕ) ≡ γ ∧ ϕ

pre(y := e;ϕ) ≡ ϕ[e/y]

pre(y := s(x);ϕ) ≡ ∃y′
(

s(x, y′) ∧ ϕ[y′/y]
)

pre(s(x) := e;ϕ) ≡ ϕ[u≈ x ∧ v ≈ e ∨ u 6≈ x ∧ s(u, v)/s(u, v)]

pre(freeT (x);ϕ) ≡ ϕ[u 6≈ x ∧ s̄(u, v)/s̄(u, v)]

pre(y := newT ();ϕ) ≡ ∃y′
(

y′ 6≈NULL ∧
∧

s∈s̄ ∀u, v(s(u, v)⇒ u 6≈ y′) ∧
ϕ[y′/y][u≈ y′ ∧ v ≈NULL ∨ s̄(u, v)/s̄(u, v)]

)

Proof. We will prove the lemma by a case distinction on α.

Assuming a condition. Let α = assume(γ). We prove this first case in all detail;
later cases will be presented less verbose.

pre(assume(γ);ϕ)

≡ by definition

∃r̄′∃c̄′
(

γ ∧
∧

c∈c̄

c′ ≈ c ∧
∧

r∈r̄

r′ = r ∧ ϕ[r̄′/r̄][c̄′/c̄]
)

≡ substitute c̄ for c̄′ in ϕ[. . . ][. . . ]

∃r̄′∃c̄′
(

γ ∧
∧

c∈c̄

c′ ≈ c ∧
∧

r∈r̄

r′ = r ∧ ϕ[r̄′/r̄][c̄′/c̄][c̄/c̄′]
)

≡ transitivity of substitution

∃r̄′∃c̄′
(

γ ∧
∧

c∈c̄

c′ ≈ c ∧
∧

r∈r̄

r′ = r ∧ ϕ[r̄′/r̄]
)

≡ push ∃c̄′ inwards

∃r̄′
(

γ ∧
∧

c∈c̄

∃c′(c′ ≈ c) ∧
∧

r∈r̄

r′ = r ∧ ϕ[r̄′/r̄]
)

≡ eliminate ∃c′ . . .

∃r̄′
(

γ ∧
∧

r∈r̄

r′ = r ∧ ϕ[r̄′/r̄]
)

≡ substitute r̄ for r̄′ in ϕ[. . . ]

∃r̄′
(

γ ∧
∧

r∈r̄

r′ = r ∧ ϕ[r̄′/r̄][r̄/r̄′]
)
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≡ transitivity of substitution

∃r̄′
(

γ ∧
∧

r∈r̄

r′ = r ∧ ϕ
)

≡ push ∃r̄′ inwards

γ ∧
∧

r∈r̄

∃r′(r′ = r) ∧ ϕ

≡ eliminate ∃r′ . . .

γ ∧ ϕ

Assignment. Let α = y := e. Recall that y and e are constants in c̄.

pre(y := e;ϕ)

≡ by definition

∃r̄′∃c̄′
(

y′ := e ∧
∧

c∈c̄\{y}

c′ ≈ c ∧
∧

r∈r̄

r′ = r ∧ ϕ[r̄′/r̄][c̄′/c̄]
)

≡ substitute e for y′ and c for c′, c ∈ c̄ \ {y}, in ϕ[. . . ][. . . ]; push ∃c̄′ inwards

∃r̄′
(

∃y′(y′ := e) ∧
∧

c∈c̄\{y}

∃c′(c′ ≈ c) ∧
∧

r∈r̄

r′ = r ∧ ϕ[r̄′/r̄][e/y]
)

≡ eliminate ∃y′ . . . and ∃c′ . . . ; swap order of substitutions in ϕ[. . . ][. . . ]

∃r̄′
(

∧

r∈r̄

r′ = r ∧ ϕ[e/y][r̄′/r̄]
)

≡ substitute r̄ for r̄′ in ϕ[. . . ][. . . ]; push ∃r̄′ inwards and eliminate

ϕ[e/y]

Read access. Let α = y := s(x). Recall that x and y are constants in c̄ and s is
a relation symbol in r̄.

pre(y := s(x);ϕ)

≡ by definition

∃r̄′∃c̄′
(

s(x, y′) ∧
∧

c∈c̄\{y}

c′ ≈ c ∧
∧

r∈r̄

r′ = r ∧ ϕ[r̄′/r̄][c̄′/c̄]
)

≡ substitute c for c′, c ∈ c̄ \ {y}, in ϕ[. . . ][. . . ]; push ∃c′ inwards, c′ ∈ c̄′ \ {y′}

∃r̄′∃y′
(

s(x, y′) ∧
∧

c∈c̄\{y}

∃c′(c′ ≈ c) ∧
∧

r∈r̄

r′ = r ∧ ϕ[r̄′/r̄][y′/y]
)

≡ eliminate ∃c′ . . . ; swap order of substitutions in ϕ[. . . ][. . . ]

∃r̄′∃y′
(

s(x, y′) ∧
∧

r∈r̄

r′ = r ∧ ϕ[y′/y][r̄′/r̄]
)

≡ substitute r̄ for r̄′ in ϕ[. . . ][. . . ]; push ∃r̄′ inwards and eliminate

∃y′
(

s(x, y′) ∧ ϕ[y′/y]
)
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Write access. Let α = s(x) := e. Recall that x and e are constants in c̄ and s is
a relation symbol in r̄.

pre(s(x) := e;ϕ)

≡ by definition

∃r̄′∃c̄′
(

∀u, v
(

s′(u, v)⇔ u≈ x ∧ v ≈ e ∨ u 6≈ x ∧ s(u, v)
)

∧
∧

c∈c̄ c
′ ≈ c ∧

∧

r∈r̄\{s} r
′ = r ∧

ϕ[r̄′/r̄][c̄′/c̄]
)

≡ substitute c̄ for c̄′ in ϕ[. . . ][. . . ]; push ∃c̄′ inwards and eliminate

∃r̄′
(

∀u, v
(

s′(u, v)⇔ u≈ x ∧ v ≈ e ∨ u 6≈ x ∧ s(u, v)
)

∧
∧

r∈r̄\{s} r
′ = r ∧

ϕ[r̄′/r̄]
)

≡ substitute r for r′, r ∈ r̄ \ {s}, in ϕ[. . . ]; push ∃r′ inwards, r′ ∈ r̄′ \ {s′}

∃s′
(

∀u, v
(

s′(u, v)⇔ u≈ x ∧ v ≈ e ∨ u 6≈ x ∧ s(u, v)
)

∧
∧

r∈r̄\{s} ∃r
′(r′ = r) ∧

ϕ[s′/s]
)

≡ eliminate ∃r′ . . . ; apply equivalence for s′ to ϕ[. . . ]

∃s′
(

∀u, v
(

s′(u, v)⇔ u≈ x ∧ v ≈ e ∨ u 6≈ x ∧ s(u, v)
)

∧

ϕ[s′/s][u≈ x ∧ v ≈ e ∨ u 6≈ x ∧ s(u, v)/s′(u, v)]
)

≡ transitivity of substitution

∃s′
(

∀u, v
(

s′(u, v)⇔ u≈ x ∧ v ≈ e ∨ u 6≈ x ∧ s(u, v)
)

∧

ϕ[u≈ x ∧ v ≈ e ∨ u 6≈ x ∧ s(u, v)/s(u, v)]
)

≡ push ∃s′ inwards

∃s′∀u, v
(

s′(u, v)⇔ u≈ x ∧ v ≈ e ∨ u 6≈ x ∧ s(u, v)
)

∧

ϕ[u≈ x ∧ v ≈ e ∨ u 6≈ x ∧ s(u, v)/s(u, v)]

≡ eliminate ∃s′ . . .

ϕ[u≈ x ∧ v ≈ e ∨ u 6≈ x ∧ s(u, v)/s(u, v)]

Deallocation. Let α = freeT (x). Recall that x is constant in c̄ and all s ∈ s̄ are
relation symbols in r̄.

pre(freeT (x);ϕ)

≡ by definition

∃r̄′∃c̄′
(
∧

s∈s̄ ∀u, v
(

s′(u, v)⇔ u 6≈ x ∧ s(u, v)
)

∧
∧

c∈c̄ c
′ ≈ c ∧

∧

r∈r̄\s̄ r
′ = r ∧

ϕ[r̄′/r̄][c̄′/c̄]
)

≡ substitute c̄ for c̄′ in ϕ[. . . ][. . . ]; push ∃c̄′ inwards and eliminate
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∃r̄′
(
∧

s∈s̄ ∀u, v
(

s′(u, v)⇔ u 6≈ x ∧ s(u, v)
)

∧
∧

r∈r̄\s̄ r
′ = r ∧

ϕ[r̄′/r̄]
)

≡ substitute r for r′, r ∈ r̄ \ s̄, in ϕ[. . . ]; push ∃r′ inwards, r′ ∈ r̄′ \ s̄′

∃s̄′
(
∧

s∈s̄ ∀u, v
(

s′(u, v)⇔ u 6≈ x ∧ s(u, v)
)

∧
∧

r∈r̄\s̄ ∃r
′(r′ = r) ∧

ϕ[s̄′/s̄]
)

≡ eliminate ∃r′ . . . ; apply equivalence for s′ to ϕ[. . . ], s′ ∈ s̄′

∃s̄′
(
∧

s∈s̄ ∀u, v
(

s′(u, v)⇔ u 6≈ x ∧ s(u, v)
)

∧

ϕ[u 6≈ x ∧ s̄(u, v)/s̄(u, v)]
)

≡ push ∃s̄′ inwards
∧

s∈s̄ ∃s
′∀u, v

(

s′(u, v)⇔ u 6≈ x ∧ s(u, v)
)

∧

ϕ[u 6≈ x ∧ s̄(u, v)/s̄(u, v)]

≡ eliminate ∃s′ . . .

ϕ[u 6≈ x ∧ s̄(u, v)/s̄(u, v)]

Allocation. Let α = y := newT (). Recall that y is constant in c̄ and all s ∈ s̄ are
relation symbols in r̄.

pre(y := newT ();ϕ)

≡ by definition

∃r̄′∃c̄′
(

y′ 6≈NULL ∧
∧

s∈s̄ ∀u, v(s(u, v)⇒ u 6≈ y′) ∧
∧

s∈s̄ ∀u, v
(

s′(u, v)⇔ u≈ y′ ∧ v ≈NULL ∨ s(u, v)
)

∧
∧

c∈c̄\{y} c
′ ≈ c ∧

∧

r∈r̄\s̄ r
′ = r ∧

ϕ[r̄′/r̄][c̄′/c̄]
)

≡ substitute c for c′, c ∈ c̄ \ {y}, in ϕ[. . . ][. . . ]; push ∃c′ inwards, c′ ∈ c̄′ \ {y′}

∃r̄′∃y′
(

y′ 6≈NULL ∧
∧

s∈s̄ ∀u, v(s(u, v)⇒ u 6≈ y′) ∧
∧

s∈s̄ ∀u, v
(

s′(u, v)⇔ u≈ y′ ∧ v ≈NULL ∨ s(u, v)
)

∧
∧

c∈c̄\{y} ∃c
′(c′ ≈ c) ∧

∧

r∈r̄\s̄ r
′ = r ∧

ϕ[r̄′/r̄][y′/y]
)

≡ eliminate ∃c′ . . . ; swap order of substitutions in ϕ[. . . ][. . . ]

∃r̄′∃y′
(

y′ 6≈NULL ∧
∧

s∈s̄ ∀u, v(s(u, v)⇒ u 6≈ y′) ∧
∧

s∈s̄ ∀u, v
(

s′(u, v)⇔ u≈ y′ ∧ v ≈NULL ∨ s(u, v)
)

∧
∧

r∈r̄\s̄ r
′ = r ∧

ϕ[y′/y][r̄′/r̄]
)

≡ substitute r for r′, r ∈ r̄ \ s̄, in ϕ[. . . ][. . . ]; push ∃r′ inwards, r′ ∈ r̄′ \ s̄′
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∃s̄′∃y′
(

y′ 6≈NULL ∧
∧

s∈s̄ ∀u, v(s(u, v)⇒ u 6≈ y′) ∧
∧

s∈s̄ ∀u, v
(

s′(u, v)⇔ u≈ y′ ∧ v ≈NULL ∨ s(u, v)
)

∧
∧

r∈r̄\s̄ ∃r
′(r′ = r) ∧

ϕ[y′/y][s̄′/s̄]
)

≡ eliminate ∃r′ . . . ; apply equivalence for s′ to ϕ[. . . ][. . . ], s′ ∈ s̄′

∃s̄′∃y′
(

y′ 6≈NULL ∧
∧

s∈s̄ ∀u, v(s(u, v)⇒ u 6≈ y′) ∧
∧

s∈s̄ ∀u, v
(

s′(u, v)⇔ u≈ y′ ∧ v ≈NULL ∨ s(u, v)
)

∧

ϕ[y′/y][u≈ y′ ∧ v ≈NULL ∨ s̄(u, v)/s̄(u, v)]
)

≡ push ∃s̄′ inwards

∃y′
(

y′ 6≈NULL ∧
∧

s∈s̄ ∀u, v(s(u, v)⇒ u 6≈ y′) ∧
∧

s∈s̄ ∃s
′∀u, v

(

s′(u, v)⇔ u≈ y′ ∧ v ≈NULL ∨ s(u, v)
)

∧

ϕ[y′/y][u≈ y′ ∧ v ≈NULL ∨ s̄(u, v)/s̄(u, v)]
)

≡ eliminate ∃s′ . . .

∃y′
(

y′ 6≈NULL ∧
∧

s∈s̄ ∀u, v(s(u, v)⇒ u 6≈ y′) ∧

ϕ[y′/y][u≈ y′ ∧ v ≈NULL ∨ s̄(u, v)/s̄(u, v)]
)

This ends the proof of Lemma 1.

B Alternative Semantics of Allocation

In section 2, we have treated memory allocation as an unfailing operation, i. e.,
no out-of-memory errors can occur. This appendix presents an alternative seman-
tics for memory allocation. It interprets new T () as a function which may non-
deterministically return NULL to signal an out-of-memory error. Below, this new
semantics JαK# is defined for all actions α in terms of the old semantics JαK.

JαK# =

{

Jy := NULLK ∨ Jy := newT ()K if α is of the form y := newT ()
JαK otherwise

Consequently, the weakest preconditions pre#(α;ϕ) corresponding to the new se-
mantics can be stated in terms of the old weakest preconditions pre(α;ϕ). More
precisely for all σ-formulas ϕ and all actions α, we have pre#(α;ϕ) = pre(α;ϕ)
except when α is of the form y := new T (), where

pre#(y := newT ();ϕ) = pre(y := NULL;ϕ) ∨ pre(y := new T ();ϕ) .

With the new semantics, Lemma 2 does not continue to hold. The reason is
that the class BSn, n ≥ 1, is not closed under disjunction. Therefore, we introduce
the class BS∨

n , n ≥ 0, as the set of finite disjunctions ϕ1 ∨ . . . ∨ ϕk, k ≥
1, of formulas ϕi ∈ BSn. As the following lemma shows, formulas in BS ∨

n are
preserved under the new weakest preconditions.
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Lemma 10. Let P be a program, π a path in the ECFG and ϕ a σ-formula. If
ϕ ∈ BSn, n ≥ 2, then pre#(π;ϕ) ∈ BS∨

n . The number of disjuncts in pre#(π;ϕ)
is in O(2|π| · |ϕ|), but for each disjunct, the size is in O(|π|2 · |ϕ|) and the length
of the quantifier prefix is in O(|π|+ |ϕ|).

Proof. That pre#(π;ϕ) is in BS∨
n follows from the above characterization of

pre# and the fact that pre distributes over disjunctions, i. e., pre(α;ϕ1 ∨ ϕ2) =
pre(α;ϕ1) ∨ pre(α;ϕ2). The exponential blowup in the number of disjuncts is
obvious. For the remaining claims, see the proof of Lemma 2.

The small model theorem (Theorem 8) can be extended to finite disjunctions,
see below. Therefore, bounded model checking for pointer-safety is still decidable,
even with the alternative semantics for modeling failed memory allocation.

Theorem 11. Let φ1, . . . , φk be k universal σ-formulas in BS 2, let P be an inter-
section-free TA-like monadic Datalog program and let Q be a query. If the formula
(φ1 ∨ . . . ∨ φk) ∧ P ∧ Q is satisfiable then it has a model of cardinality at
most doubly exponential in the size of the formula. Deciding satisfiability of such
formulas is in 2-NEXPTIME.

Proof. If (φ1 ∨ . . . ∨ φk) ∧ P ∧ Q is satisfiable then there exists i such that
φi ∧ P ∧ Q is satisfiable. Use Theorem 8.
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