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Abstract. Automatic verification of imperative programs that destructively ma-
nipulate heap data structures is challenging. In this paper we propose an approach
for verifying that such programs do not corrupt their data structures. We specify
heap data structures such as lists, arrays of lists, and trees inductively as solu-
tions of logic programs. We use off-the-shelf first-order theorem provers to reason
about these specifications.

1 Introduction

In this paper we show how to reason effectively about pointer programs using automatic
first-order theorem provers. Common approaches to such reasoning rely on transitive-
closure to express reachability in linked data structures. However, first-order theorem
provers cannot handle transitive closure accurately, because there is no finite first-
order axiomatisation. Instead, various approximations have been proposed for proving
(non-)reachability in linked data structures. Yet, there is no universal scheme for
approximating transitive closure — the choice of approximation depends on the data
structure and on the type of (non-)reachability problem at hand.

We propose a different approach to reasoning about pointer programs. Instead of
reasoning about reachability, we reason about the extension of heap data structures, i. e.,
about sets of heap cells. This is sufficient to express many (non-)reachability problems,
e. g., “x is reachable from the head of the list”, or “the lists pointed to by x and y are
separate”.

We define common data structures, including acyclic lists, cyclic lists, sorted lists,
and binary trees, as logic programs. More precisely, the logic programs define shape
types, i. e., monadic predicates capturing the extension (set of heap cells) of the given
data structure. These logic programs, if viewed as universal first-order theories, have
many models, some of which will contain junk, i. e., unreachable heap cells; see Fig 3,
showing a shape type for a singly linked list containing junk. The issue of junk models
can be avoided if we confine ourselves to least models, i. e., to inductive reasoning. We
approximate this inductive least model reasoning by first-order verification conditions.
The main contributions of this paper are the following:

– We present logic programs defining a number of common shape types (Section 2).
The programs are carefully chosen to harness the power of automatic resolution-
based theorem provers (in our case study SPASS [29]) and SMT solvers with
heuristic-driven quantifier instantiation (in our case study Yices [6]).
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– We describe a methodology to verify that pointer programs maintain shape invari-
ants (Section 3), which may express properties like “a data structure is a sorted
doubly-linked list”. The method relies on user-provided code annotations and on
verification condition generation.

2 Modelling Data Structures

2.1 Logical Heap Model

We work in the framework of many-sorted first-order logic with equality, assuming
familiarity with the basic syntactic and semantic concepts.

Notation. A signature Σ declares finite sets of sorts ΣS , function symbols ΣF and
relation symbols ΣR. Function symbols f and relation symbols R have associated
arities, usually written as R ⊆ T1 × · · · × Tm resp. f : T1 × · · · × Tn → T0 (or
f : T if f is a constant). Given signatures Σ and ∆, their union Σ∆ is a signature. We
call ∆ an extension of Σ if ∆ = Σ∆; we call the extension relational if additionally
∆S = ΣS and ∆F = ΣF .

A Σ-algebra A interprets sorts T ∈ ΣS as carriers TA, function symbols f ∈ ΣF
as functions fA, and relation symbols R ∈ ΣR as relations RA. We call B a ∆-
extension (or simply extension) of A if ∆ is an extension of Σ and B is a ∆-algebra
whose Σ-reduct B|Σ is A.

First-order formulas over Σ are constructed by the usual logical connectives (in-
cluding the equality predicate =). We write A, α |= φ to denote that formula φ is true
in Σ-algebra A under variable assignment α; we may drop α if φ is closed.

Logical model of program state. We consider programs in a subset of the programming
language C. With regard to the heap, these programs may allocate and free records
(structs in C terminology) on the heap, and they may dereference and update pointers
to these records. However, they may not perform address arithmetic, pointer type casts,
or use variant records (unions in C terminology). Under these restrictions, any given
program state (i. e., heap plus values of program variables) can be viewed a many-
sorted Σ-algebra A in the following way. (i) The C types are viewed as sorts. There
are two classes of sorts: value sorts corresponding the C base types (int, float, etc.)
and pointer sorts corresponding to C record types. (ii) The elements of the carrier TA

of a value sort T are the values of the C type T. A interprets the standard functions
(like addition) and relations (like order) on value sorts as intended. (iii) The elements
of the carrier TA of a pointer sort T are the addresses of records of the C type T in the
given heap, plus the special address NULLT , which represents NULL pointers of type T.
(iv) A field f of type T’ in a record of type T corresponds to a unary function symbol
f : T → T ′. Its interpretation fA maps addresses in TA to elements of T ′A (i. e., to
values or addresses, depending on whether T ′ is a value or pointer sort). (v) To capture
the values of program variables, we extend the signature Σ with constants, one per
program variable. For example, the program variable x of type T is represented by the
logical constant x of sort T ; the value of x is the interpretation xA of x in A.
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typedef double D; // data values

struct L_Node { // list nodes
struct L_Node* next;
struct L_Node* prev;
D data;

};
typedef struct L_Node* L; // lists

struct T_Node { // tree nodes
struct T_Node* left;
struct T_Node* right;
struct T_Node* parent;
D val;

};
typedef struct T_Node* T; // binary trees

Value sorts: D

Pointer sorts: L, T

Constants: NULLL : L

NULLT : T

Functions: next, prev : L→ L

data : L→ D

left, right, parent : T → T

val : T → D

Relations: ≤ ⊆ D ×D

Fig. 1. Data type declaration in C (left) and corresponding signature Σ (right).

Figure 1 shows a sample C data type declaration and the corresponding signature
Σ. As an aside, note that the unary functions in our heap model are total, unlike models
of separation logic where the heap is represented by partial functions. A Σ-algebra A
may thus contain junk, i. e., unreachable cells pointing to whatever they like. This does
not matter as we will restrict our attention to the well-behaved clusters of the heap cells
that are cut out by the shape types presented in the next section, and ignore all the rest.3

2.2 Shape Types as Logic Programs

Logic programs. Let Σ and ∆ be signatures such that Σ∆ is a relational extension of
Σ. A clause (over Σ∆) is called ∆-Horn (resp. definite ∆-Horn) if it contains at most
one (resp. exactly one) positive ∆-literal. A 〈Σ,∆〉-LP is a finite set of ∆-Horn clauses
over Σ∆.

Given a Σ-algebra A, we call a (Σ∆)-extension B of A an A-model of P if
B |= P; we call P A-satisfiable if it has an A-model. Note that for some A, P may
not be A-satisfiable (because P may contain non-definite ∆-Horn clauses). However, a
standard argument (Proposition 1) shows that if P is A-satisfiable then it has a least A-
model B0 (in the sense that RB0 ⊆ RB for all R ∈ ∆R and all A-models B of P); we
denote B0 by lm(P,A). Thus, P may be viewed as a transformer taking a Σ-algebra
and computing its least (Σ∆)-extension consistent with P (if it exists).

Proposition 1. Let P be a 〈Σ,∆〉-LP and A a Σ-algebra. If P is A-satisfiable then it
has a least A-model.

Proof. Let M be the class of A-models of P and assume there is B0 ∈ M. Note that⋂
M is a (Σ∆)-extension of A. We have to show that

⋂
M ∈ M, i. e.,

⋂
M |= P .

The rules of P have either the form (1) ∀~x . C ∧ D ⇒ L, or (2) ∀~x . C ∧ D ⇒ ⊥,
where L is a positive ∆-literal, D is a conjunction of positive ∆-literals and C is a
conjunction of Σ-literals (including equality literals).

3 This is very much what a programmer does, who is also not concerned about the contents of
unreachable memory locations.
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Consider a rule of form (1) and let α be an assignment such that
⋂
M, α |= C ∧ D.

For all B ∈ M, we have B, α |= C (because C is a Σ-formula and
⋂
M and all

B ∈ M extend the same Σ-algebra A) and B, α |= D (by definition of
⋂
M). This

implies B, α |= L (because B is a model of P and hence of this rule) for all B ∈ M,
which implies

⋂
M, α |= L. Hence,

⋂
M is a model of this rule.

Consider a rule of form (2). We have to show that there is no assignment α such
that

⋂
M, α |= C ∧ D. Towards a contradiction, assume there is. Then we have

B0, α |= C (because C is a Σ-formula and
⋂
M and B0 extend the same Σ-algebra

A) and B0, α |= D (by definition of
⋂
M). This implies the contradiction B0, α |= ⊥

(because B0 is a model of P and hence of this rule). ut

Shape types. Informally, a shape type is a unary predicate on the heap, characterising
the collection of heap cells that form a particular data structure (e. g., a sorted list). Its
purpose is twofold: It serves to enforce integrity constraints (like sortedness) on the data
structure, and it provides a handle to specify invariants (like separation of two lists).

In the remainder of this section, we will define a number of shape types by 〈Σ,∆〉-
LPs P , where Σ is the signature of the heap (cf. Section 2.1), which Σ∆ extends with
a unary predicate S. Given a heap A, the least model lm(P,A) may be viewed as
an annotated heap, tagging heap cells (as belonging to the interpretation of S) which
form the data structure specified by P . We note that the existence of least models will
be guaranteed by Proposition 1 because the LPs will be evidently A-satisfiable in all
intended heaps A (i. e., in all A where the data structure in question is not corrupt).

Shape types of segments of linked lists. Figure 2 presents 〈Σ,∆〉-LPs defining the
shape types of various list segments (singly- or doubly-linked, sorted or not). The
programs are parameterised by input and output signaturesΣ and∆ (the latter declaring
only the single symbol S).

The simplest LP PList defines the shape type S of unsorted singly-linked list
segments. The input signature comprises the sort of list cells L, the next-pointer
function, the pointer p to the head, and the pointer q to the tail of the list beyond the
segment. The clauses express (in order of appearance) that (i) the first cell of the tail
(pointed to by q) does not belong to S, (ii) the head of the segment belongs to S unless
p points to the tail, (iii) no cell in S points to the head, (iv) S is closed under following
next-pointers up to q, and (v) each cell in S is pointed to by at most one cell in S
(i. e., no sharing in S). Figure 3 (top) shows two models of PList. The first one is the
intended least model, where the interpretation of S really is the set of cells forming the
list segment from p to q, whereas in the second model the interpretation of S contains
some junk, i. e., cells that are unreachable from the head.

The LP PDList defines the shape type S of doubly-linked list segments from head
cell p to last cell r (where the cells ahead of p and behind r are s and q, respectively),
see the picture in Figure 3 (middle). The program defines S as both, a next-linked list
segment from p to q, and a prev-linked list segment from r to s. Moreover, it demands
that p belongs to S iff r does, and that p and r are the only cells in S that may point to
s and q, respectively. Finally, the last two clauses force the next-pointers inside S to be
converses of the prev-pointers, and vice versa.
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LP for singly-linked list segments
PList[L; next : L → L, p, q : L; S ⊆ L]
= {¬S(q),

S(p) ∨ p = q,
∀x:L . S(p) ∧ S(x) ⇒ next(x) 6= p,
∀x:L . S(x) ∧ next(x) 6= q ⇒ S(next(x)),
∀x, y, z:L . S(x) ∧ S(y) ∧ S(z) ∧ next(x) = z ∧ next(y) = z ⇒ x = y}

LP for doubly-linked list segments
PDList[L; next, prev : L → L, p, q, r, s : L; S ⊆ L]
= PList[L; next, p, q; S] ∪ PList[L; prev, r, s; S]
∪ {S(r) ⇒ S(p), S(p) ⇒ S(r),

∀x:L . S(x) ∧ ¬S(prev(x)) ⇒ x = p ∧ prev(x) = s,
∀x:L . S(x) ∧ ¬S(next(x)) ⇒ x = r ∧ next(x) = q,
∀x:L . S(x) ∧ S(next(x)) ⇒ prev(next(x)) = x,
∀y:L . S(y) ∧ S(prev(y)) ⇒ next(prev(y)) = y}

LP for singly-linked sorted list segments
PSList[D, L; next : L → L, data : L → D, p, q : L,≤ ⊆ D ×D; S ⊆ L]
= PList[L; next, p, q; S]
∪ {∀x:L . S(x) ∧ S(next(x)) ⇒ data(x) ≤ data(next(x))}

LP for doubly-linked sorted list segments
PSDList[D, L; next, prev : L → L, data : L → D, p, q, r, s : L,≤ ⊆ D ×D; S ⊆ L]
= PDList[L; next, prev, p, q, r, s; S] ∪ PSList[D, L; next, data, p, q,≤; S]

LP for singly-linked cyclic lists
PCList[L; next : L → L, p, NULLL : L; S ⊆ L]
= {¬S(NULLL),

S(p) ∨ p = NULLL,
∀x:L . S(x) ⇒ S(next(x)),
∀x, y, z:L . S(x) ∧ S(y) ∧ S(z) ∧ next(x) = z ∧ next(y) = z ⇒ x = y}

LP for doubly-linked cyclic lists
PCDList[L; next, prev : L → L, p, NULLL : L; S ⊆ L]
= PCList[L; next, p, NULLL; S] ∪ {∀x:L . S(x) ⇒ prev(next(x)) = x ∧ next(prev(x)) = x}

LP for arrays of singly-linked NULL-terminated lists
PListArray[I, L; next : L → L, a : I → L, NULLL : L; S ⊆ I × L]
= {∀i:I . ¬S(i, NULLL),

∀i:I . S(i, a(i)) ∨ a(i) = NULLL,
∀i:I ∀x:L . S(i, a(i)) ∧ S(i, x) ⇒ next(x) 6= a(i),
∀i:I ∀x:L . S(i, x) ∧ next(x) 6= NULLL ⇒ S(i, next(x)),
∀i:I ∀x, y, z:L . S(i, x) ∧ S(i, y) ∧ S(i, z) ∧ next(x) = z ∧ next(y) = z ⇒ x = y,
∀i, j:I ∀x:L . S(i, x) ∧ S(j, x) ⇒ i = j}

LP for arrays of singly-linked cyclic lists
PCListArray[I, L; next : L → L, a : I → L, NULLL : L; S ⊆ I × L]
= {∀i:I . ¬S(i, NULLL),

∀i:I . S(i, a(i)) ∨ a(i) = NULLL,
∀i:I ∀x:L . S(i, x) ⇒ S(i, next(x)),
∀i:I ∀x, y, z:L . S(i, x) ∧ S(i, y) ∧ S(i, z) ∧ next(x) = z ∧ next(y) = z ⇒ x = y,
∀i, j:I ∀x:L . S(i, x) ∧ S(j, x) ⇒ i = j}

LP for binary trees
PTree[T ; left, right : T → T, r, NULLT : T ; S ⊆ T ]
= {¬S(NULLT ),

S(r) ∨ r = NULLT ,
∀x:T . S(r) ∧ S(x) ⇒ (left(x) 6= r ∧ right(x) 6= r),
∀x:T . S(x) ∧ left(x) 6= NULLT ⇒ S(left(x)),
∀x:T . S(x) ∧ right(x) 6= NULLT ⇒ S(right(x)),
∀x, y, z:T . S(x) ∧ S(y) ∧ S(z) ∧ left(x) = z ∧ left(y) = z ⇒ x = y,
∀x, y, z:T . S(x) ∧ S(y) ∧ S(z) ∧ right(x) = z ∧ right(y) = z ⇒ x = y,
∀x, y, z:T . S(x) ∧ S(y) ∧ S(z) ∧ left(x) = z ∧ right(y) = z ⇒ x = y,
∀x, y, z:T . S(x) ∧ S(y) ∧ S(z) ∧ left(x) = y ∧ right(x) = z ⇒ y 6= z}

LP for binary trees with parent pointers
PPTree[T ; left, right, parent : T → T, r, s, NULLT : T ; S ⊆ T ]
= PTree[T ; left, right, r, NULLT ; S]
∪ {s 6= NULLT ⇒ S(r),

S(r) ⇒ s = parent(r),
¬S(s),
∀x:T . S(x) ∧ S(left(x)) ⇒ parent(left(x)) = x,
∀x:T . S(x) ∧ S(right(x)) ⇒ parent(right(x)) = x,
∀y:T . S(y) ∧ S(parent(y)) ⇒ (left(parent(y)) = y ∨ right(parent(y)) = y)}

Fig. 2. LPs defining shape types of list segments, cyclic lists, arrays of lists, binary trees.
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Fig. 3. From top to bottom: shape types S of singly-linked list segments (intended least
model and model with unreachable junk), doubly-linked list segments, array of cyclic
lists, and binary trees.

The LP PSList defines the shape type S of sorted, singly-linked list segments. Its
parameter list extends that of PList by the data sort D, the total ordering ≤ on D, and
the data field. It adds one more clause to PList, for comparing the data values of adjacent
elements in the list segment.

Finally, the LP PSDList combines the LPs PDList and PSList, defining the shape type
S of sorted, doubly-linked list segments.

Shape types of cyclic lists. The LP PCList in Figure 2 defines the shape type S of
cyclic singly-linked lists. Its input signature comprises the sort of list cells L, the next-
pointer function, and the pointer p into the cyclic list. The clauses express (in order of
appearance) that: (i) NULL does not belong to S, (ii) the cell pointed to by p belongs to
S unless p points to NULL, (iii) S is closed under following next-pointers, and (iv) each
cell in S is pointed to by at most one cell in S (i. e., no sharing in S).
The LP PCDList defines the shape type S of doubly-linked cyclic lists by extending PCList
with a clause forcing next and prev inside S to be converses. We remark that the LPs for
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cyclic lists are more elegant than the corresponding LPs for singly- and doubly-linked
list segments.

Shape types of arrays of lists. The LPPCListArray in Figure 2 defines the shape type S of
arrays of singly-linked cyclic lists, see Figure 3 (bottom left) for a graphical depiction.
The input signature comprises the array index sort I , the list cell sort L, the next-pointer
function, and the function a mapping array indices to pointers into the lists. The shape
type S is a binary relation between array indices and list cells. Note that we model
arrays as functions from index type to element type4, ignoring array bounds. In the light
of this, the shape type S may be viewed as an array of sets of list cells rather than as a
binary relation.

The first four clauses of PCListArray state that for each index i, the unary relation
S(i, ·) — S with fixed first argument i — is the shape type of a cyclic singly-linked
list pointed to by a(i); note how these four clauses correspond to the clauses of PCList.
The last clause states that the shape types S(i, ·) and S(j, ·) must be disjoint for distinct
indices i and j.

The LPPListArray defines the shape type S of arrays of singly-linked NULL-terminated
lists in a similar way. Its first five clauses force each shape type S(i, ·) to be a singly-
linked list segment from a(i) to NULLL, and the last clause forces disjointness of distinct
shape types S(i, ·) and S(j, ·).

Shape types of binary trees. The LP PTree defines the shape type S of plain binary
trees, see the picture in Figure 3 (bottom right). The input signature comprises the sort
of tree nodes T , the left- and right-pointer functions and the pointer r to the root. The
clauses borrow heavily from the LPPList for singly-linked list segments (with q replaced
by NULLT ) and express that: (1) NULL does not belong to S, (2) the root belongs to S
unless r points to NULL, (3) no node in S points to the root, (4-5) S is closed under
following left- and right-pointers up to NULL, and (6-9) there is no sharing in S because
each node in S is pointed to by at most one node in S (clauses 6-8) and has distinct left-
and right-successors (clause 9).

The LP PPTree defines the shape type S of binary trees with parent pointers by
extending PTree. The additional clauses express that (1-2) s is the parent of the root r
unless r is not in S, in which case s must be NULL, (3) s does not belong to S, and (4-6)
the parent-pointers are converse to the union of the left- and right-pointers.

3 Verifying Pointer Programs

We aim to verify imperative programs that manipulate dynamic data structures on the
heap. Given the code of a C function plus specifications of its input and output (and
possibly of loop invariants), we want to verify that the program maintains certain shape
invariants, e. g., that the sorted list being updated remains a list and sorted.

4 Our model assumes that arrays do not live in the heap.
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Notation. Given a signature Σ, we define the signature Σ′ as a copy of Σ where
all functions f (except the constants NULLT ) and relations R are replaced by primed
functions f ′ resp. relations R′. Given a Σ-formula φ (resp. a 〈Σ,∆〉-LP P), we write
φ′ (resp. P ′) for the Σ-formula (resp. 〈Σ′,∆′〉-LP) that arises from φ (resp. P) by
replacing all functions f (except NULLT ) and relations R by f ′ and R′, respectively.

3.1 Verification Problem

We verify C functions by checking verification conditions. To do this, we convert the
code of a function into a control flow graph (CFG) and find a set of cut locations,
to which we attach shape invariants. Each path between cut locations gives rise to a
verification condition (VC), which claims that the path establishes the invariant at its
end location, given that the invariant at the start location was assumed.

We will not elaborate on the well-known techniques for translating C code to CFGs
and identifying cut locations; the reader may consult Figure 4 for an example. The figure
shows the code for inserting an element e into a non-empty sorted list pointed to by p.
The CFG has three cut locations l0 (the entry location) to l2 (the exit location), with
four paths σ1 to σ4 between them.

State signature. Associated with a C function is a state signatureΣ, the signature of the
Σ-algebras serving as logical models of program state, see Section 2.1. In the following,
Σ always refers to a fixed state signature.

In the example of Figure 4, Σ declares the value sort D and the pointer sort L, the
constants p, e, s, t,NULLL : L, the functions data : L → D and next : L → L and the
order relation ≤ ⊆ D ×D.

Path formulas. A path σ through the CFG is a sequence consisting of variable
assignments x = e; array updates a[i] = e; heap updates x->f = e; and conditions
(c) where e is an expression (an R-value in C terminology) and c is a conditional
expression.5 The translation of such paths to first-order logic is well-known and will
not be detailed here; the reader is referred to Figure 4 for examples. The path formula
π resulting from translation of a path σ is a (ΣΣ′)-formula, where the signatures Σ
and Σ′ belong to the state at the start and end locations of σ, respectively. Two things
to note. First, part of each path formula is an explicit “frame condition” stating which
variables and pointer fields do not change; note the use of second-order equalities like
next′ = next as short-hands for more complex first-order expressions. Second, path
formulae, like the ones for paths σ3 and σ4, may start with a string of second-order ∃-
quantifiers to project away intermediate state; these quantifiers will always be eliminable
by Skolemisation.

Shape invariants. A ∆-shape invariant is a pair 〈P, φ〉, where P is a 〈Σ,∆〉-LP and φ
is a (Σ∆)-formula. Its purpose is to constrain the program state by the relating shape
types, which are defined by the LP P , with each other or with program variables.

5 To keep the presentation simple, we ignore dynamic memory allocation and function calls.
Both could be handled: memory allocation through tracking the set of allocated heap cells,
function calls through extra cut locations before and after call sites.
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void insert(L p, L e)
{

L s = p;
L t = s->next;
while (t != NULL) {

if (e->data >= t->data) {
s = t;
t = s->next;

}
else break;

}
e->next = t;
s->next = e;

}

t = s−>next;

s = p;

(t != NULL) (e−>data < t−>data)

(e−>data >= t−>data)

s = t;

t = s−>next;

s−>next = e;

e−>next = t;

(t == NULL)

0l

1l

2l

path path formula π

σ1 : l0 → l1 = s = p; s′ = p ∧
t = s->next; t′ = next(s′) ∧

p′ = p ∧ e′ = e ∧ next′ = next ∧ data′ = data
σ2 : l1 → l1 = (t != NULL) t 6= NULLL ∧

(e->data >= t->data) data(e) ≥ data(t) ∧
s = t; s′ = t ∧
t = s->next; t′ = next(s′) ∧

p′ = p ∧ e′ = e ∧ next′ = next ∧ data′ = data
∃next1:L → L .

σ3 : l1 → l2 = (t != NULL) t 6= NULLL ∧
(e->data < t->data) data(e) < data(t) ∧
e->next = t; next1(e) = t ∧ (∀x:L . x = e ∨ next1(x) = next(x)) ∧
s->next = e; next′(s) = e ∧ (∀x:L . x = s ∨ next′(x) = next1(x)) ∧

p′ = p ∧ e′ = e ∧ s′ = s ∧ t′ = t ∧ data′ = data
∃next1:L → L .

σ4 : l1 → l2 = (t == NULL) t = NULLL ∧
e->next = t; next1(e) = t ∧ (∀x:L . x = e ∨ next1(x) = next(x)) ∧
s->next = e; next′(s) = e ∧ (∀x:L . x = s ∨ next′(x) = next1(x)) ∧

p′ = p ∧ e′ = e ∧ s′ = s ∧ t′ = t ∧ data′ = data

loc. shape invariant 〈P, φ〉 (P left column, φ right column)
l0 PSList[D, L; next, data, p, NULLL,≤; S] ∪ S0 = S ∧ p0 = p ∧ e0 = e ∧

{S(p),¬ S(e)} e 6= NULLL ∧ data(p) ≤ data(e)
l1 PSList[D, L; next, data, p, NULLL,≤; S] ∪ S = S0 ∧ p = p0 ∧ e = e0 ∧

{S(p),¬ S(e)} e 6= NULLL ∧ data(p) ≤ data(e) ∧
S(s) ∧ data(s) ≤ data(e) ∧
next(s) = t ∧ (t = NULLL ∨ S(t))

l2 PSList[D, L; next, data, p, NULLL,≤; S] ∪ S = S0 ] {e0} ∧ p = p0 ∧ e = e0
{S(p), S(e)}

path shape effect ε

σ1 S′ = S
σ2 S′ = S
σ3 S′ = S ] {e}
σ4 S′ = S ] {e}

Fig. 4. Insert an element into a non-empty list sorted in ascending order: C code, control
flow graph, paths through the CFG, shape invariants, and shape effects.

9



Shape invariants are associated with cut locations in the CFG. Figure 4 presents
the shape invariants for the insert function. These shape invariants involve a shape
type S of sorted lists, defined by variants of the LP PSList, cf. figure 2. Regarding the
shape invariant 〈P, φ〉 at l0, the LP P stipulates that the input list S is sorted, non-empty
(because it contains its head p) and does not contain the new element e, and the formula
φ states that e is not NULL and the data at p less than or equal to the data at e. Thus, the
shape invariant at l0 expresses the precondition of insert. Additionally, the formula φ
forces the ghost variables p0, e0 and S0 to record the values of the input parameters p
and e and the input list S, respectively. Regarding the shape invariant 〈P, φ〉 at l2, the
LP P stipulates that the output list S is sorted and contains the new element e, and the
formula φ states that the program variables p and e retain their input values p0 and e0,
respectively, and that the output list S is exactly the sum of the input list S0 and the
new element e0. Thus, the shape invariant at l2 expresses the postcondition of insert
(which shows that shape invariants are expressive enough to state functional correctness
of insert).

Verification condition. Given a path σ from ` to k, let π be the path formula for σ, 〈P, φ〉
the ∆-shape invariant at `, and 〈Q, ψ〉 the Λ-shape invariant at k. To prove correctness
of σ, we must show that every execution establishes the post shape invariant 〈Q, ψ〉 at
the end, provided that the pre shape invariant 〈P, φ〉 held at the start. This translates to
the following verification condition.

∀(ΣΣ′)-algebra A : lm(P,A) |= φ ∧ π =⇒ lm(Q′,A) |= ψ′ (VC)

Note that the antecedent of (VC) tacitly depends on the existence of lm(P,A), and the
succedent tacitly states that the existence of lm(Q′,A) follows from the antecedent.

The trouble with (VC) is that it requires reasoning in least models, i. e., inductive
reasoning. The next section presents our methodology to rephrase the inductive condi-
tion (VC) in first-order logic.

3.2 Approximating Inductive Reasoning

The obvious problem with using first-order provers for reasoning about shape types is
their ignorance of least models. For instance, a VC on a path σ may be invalid in first-
order logic because there is a counter model which picks the least interpretation for
shape type S at the start of σ but the greatest interpretation for S at the end.

To deal with this problem, we weaken the VC by speculatively assuming a shape
effect relating shape types at the start and end of σ. Often, the weakened VC becomes
provable in first-order logic. However, we still have to justify the assumed shape effect.
We do so by proving two further first-order VCs, which together imply that the shape
effect is an inductive consequence of the LPs defining the shape types.

Shape effects. Given a path σ from ` to k, let π be the path formula for σ, 〈P, φ〉 the
∆-shape invariant at `, and 〈Q, ψ〉 the Λ-shape invariant at k. A shape effect for σ is a
(Σ∆Σ′Λ′)-formula ε which is back-and-forth total, that is,

– ∀(Σ∆Σ′)-algebra A: A |= P ∪ {π} =⇒ ∃(Σ∆Σ′Λ′)-extension B: B |= ε, and

10



– ∀(ΣΣ′Λ′)-algebra C: C |= Q′ ∪ {π} =⇒ ∃(Σ∆Σ′Λ′)-extension D: D |= ε.

The purpose of a shape effect ε is to relate the shape types at the start of path σ with those
at the end. A convenient way to specify simple shape effects is to write set-relational
expressions like S′ = S]{e} (cf. Figure 4) as short-hands for more complex quantified
expressions. This style also makes it easy to check the totality requirement. For example,
back-and-forth totality of the shape effect S′ = S ] {e} for σ3 holds because

– every (Σ∆Σ′)-algebra which interprets S and {e} disjointly (which is enforced by
the LP P) has a (Σ∆Σ′Λ′)-extension which interprets S′ as the sum of S and {e},
and

– every (ΣΣ′Λ′)-algebra which is a model of π and interprets S′ as containing e′

(which is enforced by the LP Q′) has a (Σ∆Σ′Λ′)-extension which interprets S
such that S′ = S ] {e} becomes true; note the conjunct e′ = e of the path formula
π is essential here.

Notation. Given aΣ-algebra A, one may need to compare one A-model of the 〈Σ,∆〉-
LP P to another one. Logically, this can be done by fusing the two models, which
requires duplicating all symbols that are not shared, i. e., all relations in ∆.

We define the signature ∆̂ as a copy of ∆ where all relations R are replaced by
capped relations R̂. Given a ∆-shape invariant 〈P, φ〉, we write 〈P̂, φ̂〉 for the ∆̂-shape
invariant that arises from 〈P, φ〉 by replacing all relationsR in∆ with R̂. Given a shape
effect ε (as defined above) for a path σ, we write ε̂ for the (Σ∆̂Σ′Λ̂′)-formula ε that
arises from ε by replacing all relationsR in∆Λ with R̂; note that ε̂ is also a shape effect
for σ. Given a signature ∆, we write µ∆ for the (∆∆̂)-formula∧

R∈∆R

R̂ ⊆ R ∧
∨

R∈∆R

R * R̂

which states that the interpretation of the relations R ∈ ∆R is not minimal because it
strictly contains the interpretation of the corresponding relations R̂ ∈ ∆̂R. Note that
the set-relational expressions in µ∆ are merely short-hands for quantified formulae.

Verification conditions. Given a path σ from ` to k, let π be the path formula for σ,
〈P, φ〉 the ∆-shape invariant at `, 〈Q, ψ〉 the Λ-shape invariant at k, and ε the shape
effect for σ. To prove the inductive condition (VC) it suffices to prove the following
three first-order conditions.

P ∪ {φ, π, ε} |= ψ′ (VC1)
P ∪ {φ, π, ε} |= Q′ (VC2)

{π, ε, ε̂} ∪ Q′ ∪ Q̂′ ∪ {µΛ′} |= P ∪ P̂ ∪ {µ∆} (VC3)

(VC1) and (VC2) together state preservation of shape invariants, subject to the (yet
unjustified) assumption of a shape effect ε. (VC2) can be read as a model transformation:
Given any model of P that satisfies the path formula and the pre shape invariant, the
shape effect ε will produce models of Q′. Finally, (VC3) implies that ε preserves
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minimal models. It can be seen as a reverse model transformation which preserves
order: Given two models of Q′ (an uncapped and a capped one) that differ only in
their interpretation of the shape types such that the capped primed shape types are
strictly contained in the uncapped primed ones, the shape effects ε and ε̂ will produce
two models of P such that the capped unprimed shape types are strictly contained on
uncapped ones.

Soundness. The following theorem proves that the conditions (VC1), (VC2) and (VC3)
together imply that a shape effect is an inductive consequence (i. e., entailed in the least
model) of the LPs defining the shape types. Soundness of the first-order verification
conditions w. r. t. to the inductive condition (VC) is an easy corollary.

Theorem 2. Let σ be a path from ` to k. Let π be the path formula for σ, 〈P, φ〉 the
∆-shape invariant at `, 〈Q, ψ〉 the Λ-shape invariant at k, and ε the shape effect for σ.
Assume that (VC2) and (VC3) hold. For all (ΣΣ′)-algebras A, if lm(P,A) exists and
lm(P,A) |= φ ∧ π then lm(P ∪Q′,A) exists and lm(P ∪Q′,A) |= ε.

Proof. Towards a contradiction assume there is a (ΣΣ′)-algebra A such that lm(P,A)
and lm(P ∪ Q′,A) exist and lm(P,A) |= φ ∧ π, but lm(P ∪ Q′,A) 6|= ε. As ε is
forth-total, the (Σ∆Σ′)-model lm(P,A) of π extends to a (Σ∆Σ′Λ′)-model B of ε.
Thus, B |= P ∪ {φ, π, ε}, which by (VC2) implies B |= Q′. Note that B is not an
extension of the (ΣΣ′Λ′)-model lm(Q′,A), for if it were then B = lm(P ∪ Q′,A)
and hence lm(P ∪Q′,A) |= ε, which would contradict our assumption. Thus B|ΣΣ′Λ′

is a non-least, hence non-minimal, A-model of Q′, which implies that B has a
(Σ∆Σ′Λ′Λ̂′)-extension C such that C |= Q′ ∪ Q̂′ ∪ {µΛ′}. As the shape effect ε̂
is back-total, the (ΣΣ′Λ̂′)-model C|ΣΣ′Λ̂′ of π extends to a (Σ∆̂Σ′Λ̂′)-model D of
ε̂. Hence, the (Σ∆∆̂Σ′Λ′Λ̂′)-algebra E, which extends both C and D, is a model of
{π, ε, ε̂} ∪ Q′ ∪ Q̂′ ∪ {µΛ′}. By (VC3), this implies E |= P ∪ P̂ ∪ {µ∆}, i. e., E is
an extension of a non-minimal A-model of P , contradictory to E|Σ∆Σ′ = C|Σ∆Σ′ =
B|Σ∆Σ′ = lm(P,A). ut
Corollary 3. If (VC1), (VC2) and (VC3) hold then (VC) holds.

Proof. Assume that (VC1), (VC2) and (VC3) hold. Let A be a (ΣΣ′)-algebra such
that lm(P,A) exists and lm(P,A) |= φ ∧ π. By Theorem 2, lm(P ∪Q′,A) exists and
lm(P ∪ Q′,A) |= ε. The former implies that lm(Q′,A) exists, and the latter implies
lm(P∪Q′,A) |= P∪{φ, π, ε}, which by (VC1) implies lm(P∪Q′,A) |= ψ′. As ψ′ is
a (Σ′Λ′)-formula, we have lm(P ∪Q′,A)|ΣΣ′Λ′ |= ψ′, from which lm(Q′,A) |= ψ′

follows because lm(P ∪Q′,A)|ΣΣ′Λ′ = lm(Q′,A). Hence (VC) holds. ut
A close inspection of the proof of Theorem 2 reveals that (VC3) can be weakened
to a less symmetric condition while still maintaining soundness. Also, (VC1) may be
weakened by additionally assuming Q′ because by (VC2), Q′ is already entailed. To
sum up, the following three first-order conditions are sufficient to prove the inductive
condition (VC).

P ∪ {φ, π, ε} ∪ Q′ |= ψ′ (VC1’)
P ∪ {φ, π, ε} |= Q′ (VC2)

P ∪ {φ, π, ε, ε̂} ∪ Q̂′ ∪ {µΛ′} |= P̂ ∪ {µ∆} (VC3’)
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3.3 Experiments

We have used our methodology to successfully verify a number of simple heap-
manipulating algorithms, including the sorted list insert function from Figure 4. Other
examples include functions for inserting and deleting elements into binary trees, and
functions for moving elements between ring buffers organised in an array. All functions
were manually annotated with shape invariants and effects. Due to lack of space, we do
not report on these experiments in detail.

We have run our experiments on the theorem provers SPASS and Yices. Both provers
succeeded to prove all verification conditions. The typical run-time per VC was below
10 seconds (and often below 1 second) for both SPASS and Yices. More experiments
are necessary to determine whether our methodology scales to more complex code.

We remark on the somewhat surprising fact that Yices succeeded on all VCs, despite
its incomplete heuristics for quantifier instantiation (which we did not assist using the
trigger mechanism). We suspect that a key reason for this is our choice of defining
shape types by logic programs, which to a first-order theorem prover are just universally
quantified clauses; avoiding existential quantifiers seems to suit Yices well. However, we
did observe cases where Yices’ instantiation heuristic was sensitive to the formulation
of particular clauses (especially the no-sharing clauses for binary trees).

4 Related Work

Efficient theorem provers make first-order logic attractive framework for studying
reachability in mutable linked data structures. However, transitive closure, essential for
properties of pointer structures presents a challenge because first-order theorem provers
cannot handle transitive closure.

Various approaches for program analysis that use first-order logic have been inves-
tigated. We next discuss the most prominent.

The logic of interpreted sets and bounded quantification is used for specifying prop-
erties of heap manipulating programs [18]. The logic uses first-order logic and is in-
terpreted over a finite partially-ordered set of sorts. It provides a ternary reachability
predicate and allows bounded universal quantification over two different kinds of (po-
tentially unbounded) sets. Following this approach first-order SMT solvers, augmented
with theories, are used for precise verification of heap-manipulating programs. An al-
ternative framework uses ground logic enriched with ternary predicate [22].

The use of a decidable fragment of first-order logic augmented with arithmetic on
scalar field to specify properties of data structures is studied in [20]. In contrast to ours,
this approach does not use theories for recursive predicates like reachability, and relies
on user provided ghost variables to express properties of data structures.

In [19] a first-order formula, in which transitive closure occurs is simulated by
a first-order formula, where transitive closure is encoded by adding a new relation
symbol for each binary predicate. This together with inductively defined first-order
axioms assures that transitive closure is interpreted correctly. A set of axioms defines the
properties of transitive closure inductively. The axioms are not complete over infinite
models. If the axioms are such that every finite, acyclic model satisfying them must
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interpret the encoding of transitive closure as the reflexive, transitive closure of its
interpretation of the transitive binary relation, then the axiom schema is complete [3]. Its
incompleteness notwithstanding, the induction schema in [19] allows for automatically
proving properties of simple programs using SPASS [29].

Alternative approach for symbolic shape analysis [30] uses the framework of (ex-
tensions of) decidable fragments of first-order logic e.g. guarded fixpoint logic [10]. The
logic expresses reachability along paths and from a specific point, but not reachability
between a pair of program variables [12].

Syntactically defined logics for shape analysis, such as local shape logic LSL [26]
and role logic [15], are closely related to first-order logic. Our approach is applicable to
their translation in first-order logic. The logic LSL [26] is strictly less expressive than
the two variable fragment of first order logic with counting. Role logic [15] is variable
free logic, which is equally expressive as first-order logic with transitive closure and
consequently undecidable. A decidable fragment of role logic is as expressive as the
two variable fragment of first-order logic with counting. Role logic is closely related to
description logic which we have investigated for symbolic shape analysis [9].

Approaches based on three valued logic, which use over-approximation, have been
studied in [13, 32]. The semantics of statements and the query of interest are expressed
in three valued logic. Only restricted fragments of the logic are decidable [12].

Prominent verification approaches for analysis of data structures use parameterised
abstract domains; these analyses include parametric shape analysis [2] as well as predi-
cate abstraction [1, 11] and generalisations of predicate abstraction [16, 17]. Similarly to
our approach, reasoning about reachability in program analysis and verification follow-
ing parametric shape analysis or generalisations of predicate abstraction, are dependent
on the invariants that the program maintains for the specific data structure that it ma-
nipulates. An algorithm for inferring loop invariants of programs that manipulate heap-
allocated data structures, parameterised by the properties to be verified is implemented
in Bohne [31]. Bohne infers universally quantified invariants using symbolic shape
analysis based on Boolean heaps [24]. Abstraction predicates can be Boolean-valued
state predicates (which are either true or false in a given state) or predicates denoting
sets of heap objects in a given state (which are true of a given object in a given state).

An algebraic approach towards analysis of pointer programs in the framework of
first-order logic is presented in [21]. The underlying pointer-structures and properties
such as reachability and sharing are modelled by binary relations and the properties are
calculated by a set of rewrite rules.

Separation logic [23] is distinguished by the use of a spatial form of conjunction
(P ∗Q), which allows the spatial orientation of a data structure to be captured without
having to use auxiliary predicates. Least and greatest fixpoint operators can be added
to separation logic, so that pre- and post-condition semantics for a while-language
can be wholly expressed within the logic [27]. Formalisation of recursively defined
properties on inductively (and co-inductively) defined data structures is then achievable
in the language. The addition of the recursion operators in separation logic leads to
alterations to the standard definition of syntactic substitution and the classic substitution;
the reasons are related both to the semantics of stack storage and heap storage as well
as to the inclusion of the recursion operators [27]. Inductive shape analysis based on
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separation logic using programmer supplied invariant checkers and numerical domain
constraints is proposed in [4]. This approach is applicable to more complex data
structures defined by counting, namely red-black trees.

In [25] pointer-based data structure of singly-linked lists and a theory of linked
lists is defined as a class of structures of many-sorted first-order logic. The theory is
expressive and allows for reasoning about cells, indexed collections of cells, and the
reachability of a certain cell from another. The theory is developed for linked lists only.

Alternative languages for modelling and reasoning include modal µ-calculus [14,
28], expressive description logics [5], the propositional dynamic logic [8] and temporal
logics [7], and rewriting approaches based on first-order logic [21].

5 Conclusion

In this paper we study imperative programs with destructive update of pointer fields.
We model shape types, such as linked lists, cyclic lists, and binary trees as least models
of logic programs. We approximate the inductive reasoning about least models by first-
order reasoning. We demonstrate that the method is effective for simple programs.
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