‘L:/‘ ‘.‘E UNIVERSITAT
L b e—— DES
3> ALBERT-LUDWIGS- / SAARLANDES

UNIVERSITAT FREIBURG

AVACS — Automatic Verification and Analysis of Complex
Systems

REPORTS
of SFB/TR 14 AVACS

Editors: Board of SFB/TR 14 AVACS

Model-Checking of Specifications Integrating
Processes, Data and Time

by
Jochen Hoenicke Patrick Maier

AVACS Technical Report No. 5
May 2005
ISSN: 1860-9821

Publisher: Sonderforschungsbereich/Transregio 14 AVACS
(Automatic Verification and Analysis of Complex Systems)
Editors: Bernd Becker, Werner Damm, Martin Franzle, Ernst-R&diglderog,
Andreas Podelski, Reinhard Wilhelm
ATRs (AVACS Technical Reports) are freely downloadable fromv. avacs. or g

Copyright © May 2005 by the author(s)
Author(s) contact: Jochen Hoenickehpeni cke@ nf or mat i k. uni - ol denbur g. de).

Model-Checking of Specifications Integrating Processes,
Data and Time *

Jochen HoenicKeand Patrick Maier

! Universitat Oldenburg, Department filr Informatik, 2@1@Idenburg, Germany
hoeni cke@ nf or mat i k. uni - ol denbur g. de
2 MPI firr Informatik, Programming Logics Group, 66123 Saédken, Germany
mai er @mi - sh. npg. de

Abstract. We present a new model-checking technique for CSP-OZ-D@ya ¢
bination of CSP, Object-Z and Duration Calculus, that alawasoning about
systems exhibiting communication, data and real-time @spés intermediate
layer we will use a new kind of timed automata that presenenevand data
variables of the specification. These automata have a sioggetional seman-
tics that is amenable to verification by a constraint-badstraction-refinement
model checker. By means of a case study, a simple elevatamgderised by the
number of floors, we show that this approach admits modeatkthg parame-
terised and infinite state real-time systems.

1 Introduction

Complex computing systems exhibit various behaviouratetspsuch as communica-
tion between components, state transformation within comepts, and real-time con-
straints on the communications and state changes. Thiswaltea has led research
to combine and semantically integrate specification teples. In [13] and [14] we

introduced CSP-OZ-DC, the combination of three well-inigeged specification tech-
niques: CSP [12], Object-Z [22, 23] and Duration Calculus, 6]. Due to its expres-

siveness, however, CSP-OZ-DC is not suited for automateficagion.

In this paper, we present an approach to automaticallyw@8P-0OZ-DC specifi-
cations by model-checking. To this end, the specificatiorsr@nslated tdransition
constraint system@ransition systems whose transitions are labelled bytcainss ex-
pressed in first-order logic), which are model-checkedgisomstraint-based symbolic
techniques [6] plus predicate abstraction [10] with cotexemple-driven abstraction
refinement [3, 11, 5].

The translation from CSP-OZ-DC to transition constrairgteyns is via a novel
class of timed automata, callgdhase event automatproviding an essential prereg-
uisite for model-checking: an operational semantics foP@®-DC specifications.
These automata describe the behaviour of instantaneontsetiat stem from the CSP

* This work was partly supported by the German Research Co{iDieG) as part of the Tran-
sregional Collaborative Research Center “Automatic \atfon and Analysis of Complex
Systems” (SFB/TR 14 AVACS). Seemwv. avacs. or g for more information. A shorter ver-
sion of this work appeared as [15].

2 Jochen Hoenicke and Patrick Maier

world, states with durations that model the Object-Z statéables, and clocks used for
real-time constraints defined by Duration Calculus. Thediation to phase event au-
tomata is compositional, i. e., the translation of a CSPEIZ specification is a parallel

product of several automata, each corresponding to on@ptre specification. Thus,

our phase event automata provide the first compositionaktipaal semantics for (a

subclass of) CSP-OZ-DC.

The translation from phase event automata to transitiostcaint systems follows
an “old-fashioned recipe for real-time” [1, 16] by spliicontinuous runs into discrete
sequences of intervals. Moreover, the translation is caitipaal with respect to paral-
lel products. All in all, the process of translating CSP-DOZ-specifications via phase
event automata into transition constraint systems and hataeking these systems
can be automated completely. In all steps the structureeobtlyinal specification is
preserved, so that counterexamples found by the modekehean easily be translated
back to the CSP-OZ-DC world.

For being able to model-check, we have to pay a price. We lwenestrict the CSP-
0OZ-DC specifications such that the CSP part is finite statectnstraints in the OZ
part fall into a decidable class, and the DC part consistoafadledcounterexample
formulaeonly. Nevertheless, this subclass of CSP-OZ-DC still agimitn-trivial spec-
ifications, as we show in a small case study.

The paper is organised as follows. Section 2 introduces #ie oconstructs of CSP-
0OZ-DC via a case study. Section 3 describes phase event atsto8ection 4 sketches
the translation from CSP-OZ-DC to phase event automataedtion 5 we will intro-
duce transition constraint systems and give the translft@m automata to transition
constraints. Section 6 presents the results of applyingapproach to the case study
and verifying an invariant. Finally, we conclude with seati7.

2 Case Study

In this section we introduce the combined formalism CSP-

0OZ-DC [13]and the case study of a controller for an eleva- start

tor, see Fig. 1. The case study is kept very simple and on| 7] stop
contains the core of the controller. It is separated integhr g -

aspects, each of which is specified in one of the three Iar!— "> newgoal
guages. The control and communication aspects are spec passed
ified with CSP and encompass the interaction with the ep- ™

vironment abstracting from concrete values transmittegs
Data aspects specified with Object-Z involve the calcula-
tion of current and goal floor. The real-time behaviour is
specified with Duration Calculus.

Communication aspectare described with CSP [12], a language for communicating
sequential processes. It is used to define the admissiblesees of events:

Fig. 1. Elevator

mai n = newgoal— start — Drive
Drive = (passed— Drive) O (stop— mai n)

Model-Checking of Specifications Integrating Processesa@nd Time 3

The elevator has a cyclic behaviour switching between tbegssesmai n andDrive.
The keywordmai n names the process that will be entered initially. The etaviitst
chooses a new goal floor, then it starts the engine and switohtheDrive process. It
can then either pass a floor and keep on driving, or stop ancdhrit themai n process.
The symbolO denotes an external choice, which means that the environdeter-
mines which of these event will be taken. In this case it igdeined by the interaction
with the Object-Z and Duration Calculus part of the spedifitca

Data aspects: The representation of data state and the algorithmic parteoéleva-

tor is described with Object-Z. The floors are modelled bggets ranging from the
constantdiin to Max. No concrete values for the boundaries are given but the only
requirement iMin < Max These bounds can be seen as parameters of the elevator. In
Z these constants are declared in a so called axiomatic til@fini he internal state of

the elevator is given by the following state schema. It cimistiawo variables focurrent
andgoal floor and a variablelir, which describes the direction the elevator is heading
to (1 for upwards—1 for downwards). The initial values for the variables aresgivy

a schema with the special namei t .

lnit
Min, Max: Z current goal: Z goal = current= Min
Min < Max dir : {-1,0,1} dir=0

In CSP-OZ-DC the link between events and states is establibly communication
schemas. By naming convenience, the following schema ibesathe change that the
passecevent induces:

__compassed
A(current)

current = current+ dir

The A list on the first line mentions the variables that are charigethe operation.
In this case onlycurrent is changed by adding the value dir, which increases or
decreases the floor counter depending on the valdé of

For simplicity the set of requested floors and the algoritbroitoose the next goal
floor is abstracted from. Instead the goal floor is chosendeiarministically from the
range of all floors except the current one. When the elevaotss it will choose the
direction in accordance with the position of the new goalrflémally the elevator is not
allowed to stop before reaching the goal floor. This can biedtay a communication
schema with an empty delta list. These schemas are give Fig.

Real-Time aspectare described with Duration Calculus (DC). This is a logiattal-
lows specifying real-time behaviours. Unfortunately thi ibgic of Duration Calculus
is too powerful to be checked automatically. Therefore anhgestricted class of for-
mulae, calleccounterexample formulaenay be used in CSP-OZ-DC specificatiins

3 In[13] we used implementables for Duration Calculus but éna just abbreviations for certain
counterexample formulae.

4 Jochen Hoenicke and Patrick Maier

A counterexample formula describes a specific undesiredvietr in form of a linear
trace. This formula is negated as it is a forbidden behavi®estricting ourself to these
types of formulae makes over-specification less likelysleasy to see that a certain
behaviour should not occur and this is all the formula states

The general shape of a counterexample formula is as follows:

- O(phase ; ... ; phase)

Here the formula>F states that there is a subinterval (DC formulae describstihpe
of trajectories in a given time interval) wheffeholds. This interval is then chopped up
into n subintervals (this is denoted byeach satisfyingphase, which must be a simple
formula restricting the current state of the system, thats/hat may or may not occur
during this interval, and either the minimum or the maximwndth of this interval.
The whole formula is negated as it is a counterexample.

To restrict the state of a variable the standard Duratiom@as notation is used:
For example[dir = 1] holds for intervals satisfyingir = 1. For each event a new
Boolean variable is introduced that changes every time ¥eateoccurs. The formula
1 evholds for a point interval, at which the Boolean variableehange$ The formula
Hevstates that an event does not occur during a non-empty aiterv

In the case study real-time properties are used to ensurihthelevator stops when
it reaches the goal floor before passing the next floor. Toeeaefthis, a minimum time
of three seconds between two adjaceassedevents is demanded. This is expressed
by a negated counterexample where passedevents occur after each other, with an
interval in between that has a duration (denoted)yf at most three seconds.

- O(] passed ¢ < 3; | passed

Furthermore it is claimed that the elevator stops within seconds. The following
formula states the impossibility of the stop event not odogreven after the goal has
been reached for more than two seconds.

— <O([eurrent#£ goal] ; ([current= goal] A ¢ > 2 A Hstop))

The complete specification of the elevator is shown in Figl't#& specification is
framed and given a name. It starts with the interface spadtific that lists the names
of the communication events. The interface is followed By @SP and Object-Z part.
Then follows the DC part, which is separated by a short hoteldine.

The property to verify for this specificationin < current< Max. Note that it is
not obvious that this property holds at all, as there is nd sineck incompassedIt
only holds because of the interaction between the CSP goitesdata transformation
and the real-time properties of the specification. As a maftéact, every single line
of the above specification contributes to this property.hi@ temainder of this paper
this combined specification is translated into a certainl lkihtimed automata and the
invariant property above is proven.

4 tis defined ag ev=TevV | evwith the operatorg, | as defined in [26]
% ltis defined asd ev:= [ev] V [eV]

Model-Checking of Specifications Integrating Processesa@nd Time 5

__Elevator.

chanstart, passedstop newgoal

mai n < newgoal— start — Drive

Drive = (passed— Drive) O (stop— mai n)

Init

Min, Max : Z current, goal : Z goal = current= Min
Min < Max dir : {-1,0,1} dir =0
_comnewgoal _com.start

A(goal) A(dir)

Min < goal < Max goal > current = dir’ =1
goal # current goal < current = dir’ = —1
_compassed _comstop

A(current) A()

current = current+ dir goal = current
- (] passed ¢ < 3; | passed
- O([eurrent# goal] ; ([current= goal] A £ > 2 A Bstop))

Fig. 2. Elevator specification

3 Phase Event Automata

In this section a new type of timed automata is introduced;aled phase event au-
tomata that can characterise the behaviour of state- and evesabsystems. These
automata serve as a bridge between CSP-OZ-DC describedtiars2 and transition
constraint systems that will be described in the next seclibey possess the notion of
events, variables and clocks.

Fig. 3 shows an example of a phase event automaton. This atdgomrorresponds to
the second Duration Calculus formula of the case study §pegithat the automaton
should stop when the destination floor has been reachedllynit can be either in
phasep, (if current=£ goalholds) or in phase; (otherwise). There are no restrictions
of what may happen next. As soon as a change ftarrent = goalto current= goal
occurs, the automaton switches to phpseresets the clock; to zero and makes sure
that the elevator will stop within two seconds. Due to theaimantc; < 2, phase
p. must be left in time. One possibility is to back pg, which can only be done if
current=# goalholds. The other possibility is bystopevent.

3.1 Notation

The states of the systems are described by first-order faemi/e work in many-
sorted first-order logic with equality denoted by The set of variables is denoted by
V. With each variable € V a sorttypgx) is associated, which restricts the possible
values forx. The logic uses typed functions and predicate symbols. Rhosnterms

6 Jochen Hoenicke and Patrick Maier

c =0 P2
(current= goal
cL <2

Po
current £ goal

P1
current = goal

true

Fig. 3. A phase event automaton

and formulae are defined inductively. By we denote the class of first-order formulae
that are allowed in the specificatiof(V) denotes the set of those formulaedrthat
only refer to variables iiv C V. To be able to formulate the translations in Section 5,
we demand thaf contains at least the class of quantifier-free formulaelinrg only
Booleans variables and linear arithmetic expressionstheereals. For the case study,
L should moreover contain linear arithmetic expressions thesintegers.

The set of variable¥ is partitioned into two disjoint sefs and)” such that”’ is
a copy ofV. We call the variables i’ primed those in}V unprimed The unprimed
variables refer to the state before a transition while tiagd variables refer to the post
state.

Semantically, variables are interpreted by valuationsahsyntactic symbols ex-
cept variables by a fixed algebra. Given a subset V), aV-valuationa is a mapping
that assigns a value ldy,¢y) to each variable € V, the domain of that type. Some-
times, we denote ¥-valuationa by the expressiofix — «(x) | x € V}. The set of all
V-valuations is denoted byal(V). Given two subset¥;,V, C V and aV;-valuation
«, we denote the restriction af to a (Vi N V)-valuation byal,,. Given two sub-
setsV;, Vs C V, aV;-valuationa; and aVs-valuationas with aily, = asly,, we
write a1 U ae to denote thgV; U Vsy)-valuationa with 04|V1 = o anda|\,2 = am.
Given a subse¥ C V and aV-valuationa, we writeo’ to denote th&/’-valuation with
o/ (X') = a(x) for all x € V. Given aV-valuationa and a formulap with free(p) C V,
we write« = to denote thatv satisfiesp. We write = ¢ to denote thap is valid.

To introduce the timed automata notion of clocks, we distigly a sorfTime, inter-
preted by the (non-negative) real numbers. Ciicks C V be a set of time variables,
i.e.,typec) = Time for all ¢ € Clocks, which we callclocks Let C C Clocks be a
set of clocks. Given tw@&-valuationsn and3, a non-negative real numbep 0 and a
subset of clockX C C, we definex + 3, o +t, ta as theC-valuations that are obtained
by addition resp. multiplication of the clock values amfX := 0] as theC-valuation
that assigns all clocks iX the value zero and leaves all other unchanged. We call a
formulay € £(C) convexf (1 —t)a +t3 = ¢ for all real numberg <t < 1andall
C-valuationsy andj with a = ¢ andg = ¢.

Theeventsare modelled by a s&vents C V of boolean variables, i. etypgle) =
Bool for all e € Events However, here events are not modelled by changes of this

Model-Checking of Specifications Integrating Processesa@nd Time 7

variable, but the variable is true if the event occurs, falgeerwise. Lee C Events
be a set of events. Byg, we denote the characteristic function&fi. e., the mapping
from Eventsto Ugye = B such that for ale € Events ye(e) = trueiff e € E. Note
that yg is anEventsvaluation.

3.2 Formal Definition

A phase event automaton (PEAYefined as a tupld = (P,V,A,C,E, s |, Py) of the
following components:

— Pis a set of states (phases).

— V C V) (Eventsu Clocks) is a finite set of (state) variables.

— A C Eventsis a finite set of events.

— C C Clocksis a finite set of clocks.

- ECPxL(VUV'UAUC) xP(C) x Pis aset of edges. An eddp,, g, X,p2) € E
represents a transition from phaseto phasep, under guardy. All clocks in X are
reset when this transition is taken.

—s: P — L(V) is a labelling function that associates each phase with diqat
that must hold during this phase.

— | : P — £(C) is a function assigning to each phase a clock invariant taatth
hold while the automaton is in this phase.

— Py C Pis a set of possible initial phases.

We impose the extra requirements that

— for all p € P, the clock invariant(p) is convex, and
— for all p € P, E contains a stuttering eddp, 7€; A ... A "& A Vi = V] A ... A
v = V[, 2, p) for some particulafe;, ..., &} C A {vi,...,vj} CV.

To make the intuitive meaning of phase event automata mreesefine the traces
of an automaton as sequences of variable and clock evatsatime delays and com-
municated events. Let = (P,V,A,C,E,s,|,P;) be a PEA. Astateof A is a triple
(p, 3,~) of a phase € P, aV-valuationg and aC-valuatiorry. A durationis a positive
real number. Aun of A is an infinite sequence

<(p0760570)7t07Y07 (pla 61571)7':1; Yla c >

alternating state§;, i, vi), durationg; and sets of eventg C A such that the follow-
ing holds:

po € Po.

Forallc € C, yo(c) = 0.

Foralli >0, 5 E s(pi)-

Foralli>0andallo <é <t,~+4¢ EI(p).

For alli > 0 there is an edgépi, 9, X, pi+1) € E such that
(@ BUBU(i+t)Uxy =gand

(b) Y41 = (v +1)[X:=0].

arwbhPE

8 Jochen Hoenicke and Patrick Maier

We denote the set of runs Run.A). We call a statép, 3, v) reachabléf there isarun
<(p0a Bo, '70)7 to, Yo, (pla B, '71)a t, Y, .. > of A such that(pv B, ’7) = (pi7 Bisi + 6)
for somei > 0 and0 < ¢ < t;. By ReacliA), we denote the set of reachable states of
A.

The stuttering edgepi, =€1 A ... A =& A Vi = Vi A ... AV =V, 2,pj) is
required to make the definition invariant against stutgerirhis simplifies the definition
of parallel composition, because automata can step synchsty.

Lemma 1. Let A be a PEA and r= {((po, 50,70);t0, Yo, (P1,01,71),t1,Y1,...) @
run of A. Then for all i > 0, stuttering the i-th state in r yields another run 4f
more precisely for alb < ¢ < t;, replacing the subsequen¢@;, 5, 7i), ti, Vi) in r by
((pi, i, %), 6,9, (P, 5,7 +9),t —4,Y:) yields a run ofA.

Given a run{(po, 50, 7), to, Yo, (pP1,51,71),t1, Y1,...) of A, we call the infinite
sequencéfo, to, Yo, O1,11, Y1,...) atraceof A, i.e., a trace is a sequence alternating
V-valuations, durations and sets of events.TBycg.A), we denote thérace language
(i.e., set of traces) ofl.

3.3 Parallel Composition

To build a larger system from multiple automata a parall@hposition operator has to
be defined. Here, it also plays an important role in definimgas#ics for CSP-OZ-DC.
Each part is translated separately into an automaton agdtkeeut in parallel. In [13]
the CSP and Object-Z part are joined by the CSP synchronaadigd operator and the
Duration Calculus part is joined with logical conjunctidiv. define equivalent seman-
tics with phase event automata the parallel compositioedsiired to have the same
property. To achieve this, the automata are synchronisdmtmevents and states: An
event that is in the alphabet of both automata may only bentdiketh automata agree,
which is the same as CSP synchronisation. Likewise a variabboth automata may
only be changed if both automata allow it, which correspandsgical conjunction.
The clocks need to be disjoint, so they do not interfere wétbheother. Theparallel
composition4; || A, of two automatad; and A,, A = (P, Vi, A, C,Ei, s, i, Poi),

is the PEAA = (P,V,A,C,E,s,1,Py) defined as follows:

— P:=P; x Ps. Thisis a standard product automata construction.

-V:.= V1 U V2.

— A:= A UA,. The new alphabet is the union of the two alphabets.

— C:=C; UCy andC; N C, = @. The clock set is the disjoint union @f; andCs,
that is clocks that appear in both sets need to be renamed.

—s((p1,p2)) = s(p1) A s(pz2). The states are labelled with the conjunction of the
corresponding state predicatesdn and.A,.

— 1((p1,p2)) = 1(p1) A I(p2). Likewise the clock invariant is the conjunction of the
clock invariants in4; and.A,.

- P() = P()1 X P()Q.

— The set of edges containg (py, p2), 01 A G2, X1 U Xg, (P}, p5)) for each two edges
(pi, i, Xi, p)) € Ei, i = 1,2 inthe corresponding automath. Note that the stutter-
ing edges of one automaton allow the other automaton to depairstiependently
from the first automaton. This is the reason why stutteringeedare required.

Model-Checking of Specifications Integrating Processesa@nd Time 9

This is a product automaton construction. Both automata agree on the state space
and events must occur synchronously, therefore the statiéigates and transition guards
are the conjunction of the predicates for the two automata.dbvious from this defi-
nition that parallel composition is commutative (moduloaming of phases) and that
it preserves the extra requirements of convexity and sintfedges. The traces of the
parallel automaton are exactly those that are allowed by dotomata:

Lemma 2. Let.A; and.A; be PEA. TherBo, to, Yo, . . .) € Tracg A || Az) if and only
if <60|V1’t07Y0 n Al, .. > S Trachl) and <60|V25t05 Y() n AQ, .. > S TraCdAQ).

This can be easily seen by comparing the runs of the threemati¢o This lemma sug-
gests the following verification method for properties thed satisfied if they hold for
every trace. To prove such a property for a system of automata. . . || .An, one can
choose some automata that seem to be related to the propeetizope is that for this
small subsystem it is much easier to prove than for the figtey. If the smaller sub-
system satisfies the property, the complete system doed@isause it has only fewer
traces. Otherwise the model-checker gives a counterexatingl can be examined. If
it is prevented by one of the remaining automata the autamiatadded to the parallel
product and the model checking is repeated.

4 PEA Semantics for CSP-Oz-DC

In this section we will give semantics for CSP-OZ-DC basegbase event automata.
They are equivalent to the semantics given in [13]. The séiosis compositional: The
CSP, Object-Z and Duration Calculus part are translatedraggly into phase event
automata and then run in parallel. The semantics of the aaplevator specification
is

A(Elevator) = A(CSFEIevator) HA(OZEIevator) ||A(DCEIevator)

Translation of CSP: The translation of the CSP part to a phase event automaton is
straightforward. The operational semantics of CSP [18ki&duto construct an equiva-
lent phase event automaton. The phases are labelled by ©&&5pes, the alphabkts

the alphabet ofrai n. There are no state variablgsand no clock<. For each transi-
tionp > p of the operational semantics there is an egiga A Neca (@) &9, p)

E, wh|ch allows only evend and forbids all other events in the aIp%abet F@ftean—
sitionp = p’ the corresponding edge (i, Neca € 9, p’) cOmmunicating no events.
And finally there is the stuttering eddp, .., —€, @, p) for everyp € P. The initial
phase is the phase corresponding toaé n-process. Fig. 4 shows the phase event
automaton for the CSP process given in section 2.

Translation of Object-Z:The Object-Z part is translated into a two-phase automaton.
The initial phase restricts the state with the predicatésint . This phase is connected
with the main phase by a single edge allowing no events cabkrichanges. The main
phase has one edge for each event that allows exactly ths, &eeps all variables not

in the A-list constant, and restricts the variables in accordarittetive communication
schema. Every phase further has the stuttering edge alisagj all events and variable
changes.

10 Jochen Hoenicke and Patrick Maier

stop A —newgoalA —start A —passed

Po (mai n)
true

p2 (Drive)
true

newgoal start passed
A —start A —newgoal ' A —newgoal
A —stop o A —stop A —start

o A —passed A —passed A —stop

Fig. 4. Translation of CSP part

Translation of Duration CalculuPespite their expressivenessiit is possible to translate
each DC counterexample formula to a phase event automatenbdsic algorithm is
the same that is used for negating a finite automaton, nafmefydwer set construction.
As defined in section 2, a counterexample formula consissewedral phasgshase ;
...;phase. The idea is to remember for each of these phases, whethimiaaterval
from the start of the system to the current time satisfiesdahadla

true;phase ; ...;phase 1<i<n

A phase of the PEA is labelled by a set of those phases of th@ewmxample, for
which the above formula holds. For a phase with a lower boumitsaduration there is
an additional flag that signals if the above formula wouldydmbld without the lower
bound. Each phagghase¢with a time bound needs a clockthat measures the duration
of the phase. Because only either an upper or a lower bountgeoduration is allowed
it is obvious, when to reset those clocks (as often as p@s&iblupper bounds; only
when we have to reenter the phase for lower bounds).

We have implemented a tool that converts a counterexampieufa into a phase
event automaton and handles the technical details of thetreation. The algorithm
cannot be explained in full detail here, instead only theltesy automata are presented.
One of these automata was already shown in Fig. 3.

The automaton for the formuta ¢ (] passed ¢ < 3 ; | passedlis given in Fig. 5.
As long as no prefix of the counterexample has been obsetvedyutomaton is in
phasegyg, which corresponds to the empty set of counterexample phédeen gpassed
event occurs, the automaton switches to the ppasehich corresponds to the interval
with ¢ < 3 of the counterexample formula. To measure this duratiorctiieespond-
ing clock ¢, is started. If during the next three secondspassedevent occurs, the
automaton switches back m, as the trace so far is no longer a possible prefix of
the counterexample. If passedevent occurs irp; we would have seen the complete
counterexample. The corresponding phase is not genergtedritool to forbid this
behaviour.

5 A Constraint-based Semantics for PEA

To give semantics for CSP-OZ-DC (and phase event autontata)domain where
model-checking is possible, we use an “old-fashioned eefipreal-time” [1, 16]. The

Model-Checking of Specifications Integrating Processega@nd Time 11

~ passedc; :=0 0
1
—passedh c; = 3 U

—passed —passed

Fig. 5. Phase event automaton fer& (] passed ¢ < 3; | passed

runs are described by sequences of states, where eachigest¢hg values of all vari-
ables for a given time interval. Lamport adds one variablggiote the time since the
start of the system. As we are not interested in absolute, tiveehave a variabléen
instead, denoting the length of the time interval. Evengsrapresented by changes of
Boolean variables as in section 2. Since we want to verifgtggroperties of phase
event automata using a discrete time model checker, welatarthe automata into
discrete transition systems (with constraints) in such g that the transition system
generate as runs exactly the above sequences of intertes.sta

5.1 Transition Constraint Systems
A transition constraint systeffTCS)7 = (Loc, Var, Init, Trans) is a 4-tuple such that

— Locis a set (of locations),

— Var C Vis afinite set of unprimed (state) variables,

— Init : Loc — L(Var) assigns a (state) constraint to every location, and

— Trans: Loc x Loc — L(VarU Var') assigns a (transition) constraint to every pair
of locations.

We can viewlnit, which is a vector of state constraints, as vector of setitiai
states of a transition system. Likewi§gansis matrix of transition constraints, which
can be viewed as a matrix of relations between pre-statdsai@ns of the unprimed
variables) and post-states (valuations of the primed bk of a transition system.
See appendix B for examples of transition constraint system

We define theparallel compositior7; || 72 of two transition constraint systenfs
and7; (where7; = (Log, Var, Init;, Transg), i = 1,2) as the TCS = (Loc; x Loc,,
Var, U Vars, Init, Trans) such that for all locationé&/y, ¢2), (¢}, ¢5) € Log; x Loc,

— Init((¢1,£2)) = Inity(¢1) A Init(¢2), and
— Trang(¢1,¢2), (¢}, 44)) = Trans (41, £}) A Trang(¢a, £4).

Let7 = (Loc, Var, Init, Trang be a TCS. Astateof 7 is a pair(¢, «) of a location
¢ € Loc and aVar-valuationa. Taking states as vertices, the T@Scan be viewed
as a (potentially infinite) directed graph (where two states connected by an edge
if they satisfy the respective transition constraint).sTgraph gives rise to the usual
notions of run and reachable state. Formaliymof 7 is an infinite sequence of states
<(£(), Oé()), (61, 041), .. > such that

1. ap = Init(4), and

12 Jochen Hoenicke and Patrick Maier

2. foralli >0, ai Uof,, = Trang4;, {iy1).

We call a statd/, o) reachablef there is a run{(¢o,), (€1, 1), ...) of 7 such that
(¢,) = (4, o) for somei > 0. By Reacli7’), we denote the set of reachable states of
7. As is easily seen, the notion of run is compatible with dat@abmposition.

Lemma 3. For TCST ! and 7?2, (((¢5,03), o), ((41,€3),a1),...)isarunof 71 || T2
if and only if ((¢5, o lyan), (41s 1 lyan), - - o) @NA (€3, olya), (63, 1 |yae), - - -) are
runs of 7! and7?, respectively.

5.2 Translation of PEAto TCS

We now present a translation of a phase event automaten(P,V,A C,E, s, |, Py)
into a transition constraint systeffi(.4) = (Loc, Var, Init, Trans). There are two key
features of this translation. First, continuous transgi@f the automaton (which are
implicit in the timed automata model) are translated intpliex discrete transitions.
Second, the distinction between state and event variablgisen up in favour of state
variables; events are modelled by state change. To thisveadransform formulas
¢ € L(V) into formulasp|e % € /€lecevents € L(V U Events) by replacing each event
variablee € Eventswith a disequatioe# €. Furthermore, we introduce two auxiliary
variablesgdisc of typeBool (indicating whether the next transition is a discrete ome)) a
len of type Time (recording the length of the time interval of a continuoasition).
These auxiliary variables are reserved specially for tedimg PEA to TCS, therefore
they may not be used by any PEA. Formally, the translafi¢A) is given by:

— Loc="P.
— Var=V UAUCU {len,disc}.
— Forallpe P,

Init(p) = —disc A Agec €0 AS(p) Al(p) Alen >0 if p e Po,
P) =1 talse otherwise

— Forallpy, ps € P,

Inv(p2)" A | Contv \/ Disc(g, X)) if p1 = po,
Trangp:, p2) = (P1,9:X,p2) EE
Inv(pg)/ VAN \/ Disc(g7 X) if p1 # pe,

(P1,9,X,p2) €E

where the formulaiv(p,), ContandDisc(g, X) are given by:

Inv(pz) =len > 0 A s(p2) A 1(p2)
Cont= —disc A disc’ A /\ d~c+len A /\ X ~ X
ceC XEVUA

Disc(g, X) = disc A ~disc’ A gle# € /€lecrrens A [\ € ~0A /\ ¢=c
ceX ceC\X

Model-Checking of Specifications Integrating Processesa@nd Time 13

Here,Inv(p) expresses the invariant constraints (state and clocktased with phase
p, Contrelates pre- and post-states in a continuous transitiath Pasc(g, X) relates
pre- and post-states of a discrete transition (with ggeadd resetting the clocks X).
See appendix B for samples of PEA translated to TCS.

5.3 Semantical Correctness of the Translation

We show that the translatiof (A) of a PEA A preserves the semantics in the
sense that there is a correspondence between the rups afd 7 (A). Given a
runr = ((o,a0), (¢1,01),...) of the TCST(A), we define an infinite sequence
ra= <(p0,ﬁo,’}/0),t0,Y0, (p1751,71)7t17Y17 .. > such that for all > 0,

- pi =l
- B = aaily,
- ’yl = a2i|C|

— tj = ayi(len), and
- Yi={ec Al aiii(€) # azii2(€)}.

As the following theorem shows, this translation maps rurthe TCS7 (A) to runs
of the PEAA. Furthermore, the translation is surjective, so for everyaf A there is
a corresponding run df (A). See appendix A for a proof.

Theorem 4. Let. A be a PEA andl (A) its TCS translation.

1. Forallrunsrof7 (A), r4 is arun of A.
2. For every run r ofA there is a rurf of 7 (A) such that 4 =r.

Note that the proof of the first half of the theorem requiresvexity of the clock in-
variants of the PEA. In fact, without convexi(.4) might show runs that are artefacts
of the translation and do not correspond to runslof

As a corollary, we obtain a correspondence between the absektates ofd and
7 (A), which justifies doing reachability analysis on the disegtstent/ (A) instead
of the timed automatonl. To state the correspondence formally, we translate a state
(¢,) of T(A) into a state(l, o) 4 = (¢, |y, @|) of A. The corollary claims that this
translation is a surjective mapping from the reachablestat7 (.A) to the reachable
states ofA4; see appendix A for a proof.

Corollary 5. Let.A be a PEA and’ (A) its TCS translation.

1. Forall stateg(?,) of 7 (A), if (¢,) € Reac{7 (A)) then(¢, o) 4 € ReaclfA).
2. For all states(p, 5,7) of A, if (p,8,7) € ReacliA) then there is stat¢/, o) €
Reacli7 (A)) such that?, o) 4 = (p, 3,7)-

Note that the translation of the reachable states of the TC8) ignores variables
that are not state variables of the PEAI. e., the event variables ilvand the auxiliary
variableddisc andlen. However, the reachable statesiafA) are not more informative
than the reachable states.4f because the values of the event variables are irrelevant
for reachability in7 (A).

14 Jochen Hoenicke and Patrick Maier

6 Model Checking TCS

We verify temporal properties of CSP-OZ-DC specificatiogsttanslating them to
transition constraint systems, which we can model checkhi paper, we confine
ourselves to the verification of state invariants, i. e. fteaking whether a set of unsafe
states (violating the invariant) is reachable from thdahgtates. It is well known that
this implies the ability to verify arbitrary safety propieg by augmenting the system
with suitable monitors or test-automata [7].

For verification, we decided to use the constraint-basediratebcker ARMC [19],
because its constraint solver can handle linear arithroeécthe reals, which is crucial
for our approach to real-time. The model checker takes ag mfpransition constraint
system and a set of unsafe states (given as a vector of cotstli&e the initial states).
Going backwards from the unsafe states, it tries to determimether the initial states
are reachable by alternating the following two steps.

1. Over-approximating the reachable states using predatadtraction (w.r.t. a cur-
rent set of abstraction predicates) in order to disprovehaility, i. e., to prove the
invariant.

2. Under-approximating the reachable states using a baufyg¢ precise) symbolic
backwards reachability analysis in order to prove readityahi e., to detect real
counterexamples (and to refine the set of abstraction @tedi¢o exclude spurious
counterexamples).

In general, this abstraction-refinement loop may not teateéinHowever, in practice it
does terminate on numerous examples after a small numberations.

We would like to stress that the effectiveness and the pmdoce of the model
checker crucially depend on the constraints in the inputhBteps in the abstraction-
refinement loop, computing a predicate abstraction andgdaisymbolic reachability
analysis, require to decide satisfiability of formulaedn Therefore,£ should be a
decidable class of constraints, e. g., linear arithmetar tlre integers and reals as in
our case study. Moreover, the solver #bishould be performant in practice, since one
run of the model checker may trigger thousands of calls tetheer.

6.1 Verification of the Case Study

To demonstrate our approach, we verified that our pararsetkdlevator never drives
below the lowest or above the highest floor, i. e., we verifieditvariant

Min < current< Max . Q)

In order to model check, we translated the CSP-OZ-DC spatiific according to sec-
tion 4 into a parallel product of four PEA, one for the CSP parte for the OZ part
and one for each DC formula. As described in section 5, eaghWw4ds translated to a
TCS. The parallel composition of these TCS together withnéagation of the invariant
were fed into the model checker ARMC, which proved the iraatrin about 2 min-
utes with two iterations of the abstraction-refinement ldigp details on translating
and model checking our elevator example, we refer the re@dappendix B. Recall

Model-Checking of Specifications Integrating Processesa@nd Time 15

that the CSP-OZ-DC specification as well as the invarianevparameterised by the
symbolic constantMin andMax. Thus, we have verified the invariant for all elevators
that are instances of the specification, independent of¢chebsize of the state space
of those instances.

Note that even the simple invariant (1) is a real-time propelespite it does not
contain timing constraints. However, the invariant dogseshel on the timing constraints
enforced by the DC formulas; in fact, erasing any of the two fo@nulas from the
CSP-0Z-DC specification causes (1) to be violated, which ARt&n demonstrate
with counterexample traces in less than 20 seconds; seadigifor details.

7 Conclusion

We presented a technique to model-check a combined spéoifieeritten in CSP-OZ-
DC by translating it into phase event automata. The sengaofic€SP-OZ-DC used
here is equivalent to the original one given in [13], howeitas defined in a different
way. The three parts of the specification are separatelglated into phase event au-
tomata, which are then joined by parallel composition. Breagomata have the notion
of events, data variables and clocks, which allows to regrethese concepts without
encoding. Their special parallel composition is equivatenCSP synchronised par-
allel composition and logical conjunction in Object-Z andrBtion Calculus. These
automata are further translated into transition constsistems that are then checked
by a constraint-based model-checker using the abstramtiomrement paradigm. The
model-checker can work with symbolic values, thus admitscking parameterised
specifications.

7.1 Related Work

In [13] we already presented a model-checking algorithmgitie model-checker Up-
paal for timed automata. However, it could only handle a vesyricted set of Duration
Calculus that could not refer to state variables. Also itldaunly handle finite system.

In [8] a translation from TCOZ, a combination of Timed-CSRiabbject-Z, to
Timed Automata is presented. In TCOZ timing behaviour is segarated but mixed
with the CSP part and the translation closely follows thadtrre of the Timed-CSP
part. This approach lacks support for infinite data.

A bounded model-checking (BMC) approach for checking \lidf dense-time
Duration Calculus was first presented in [9] and is the basithie tool IDLVALID [20].
However, BMC can only find counter-examples upto a giventleiagd also does not
support infinite data.

Closest to our model of phase event automata are the timeohata of Kronos [25],
which use the same model of clocks and the same synchramigati events but lack
the data part, and phase automata [24], where the idea ohymisation over states
is taken from. In many other automata models, e.g., statés;lhere is a shared data
space in the form of global variables, that can be read froth\artten to by any
component. This leads to unexpected side-effects thoogleximple, if a component
that writes to the variable is added later.

16 Jochen Hoenicke and Patrick Maier

HyTech [2] can also check parameterised systems. Howesapihroach used there
is complementary: HyTech finds the parameter values for hwtiie system is safe,
while in our approach safety is checked for all possible petars values. Also HyTech
can only have parameters in timing constraints.

There exist a number of other abstraction-refinement mdusthers, for example
BLAST [11], MAGIC [5] and SLAM [3]. These model checkers agglored to check
properties of sequential or multi-threaded imperativegpams, often operating systems
code, and they generally deal well with arrays and lineaharétic over the integers.
However, to our knowledge, none of the above model checkeggasts reals, which
are essential for model checking real-time systems.

7.2 Future Work

Currently the model-checker can only check for reachablite would like to use the
technique of test-automata [7] to reduce model-checkinD®©fformulae to reacha-
bility. In this approach a parallel automaton checks thenfda and reaches a certain
state if the formula is violated. We are currently researghihe class of Duration Cal-
culus formulae that can be checked by this approach. It ia Erger than the set of
counterexample formulae.

The above approach only allows safety properties. Howekliere exists an ex-
tension of ARMC, the model-checker used here, that allowsheck liveness prop-
erties [17]. It can only check for fair termination, but withe idea of test automata
it is possible to check for liveness properties given in DioraCalculus extended by
liveness [21].

Currently, our model-checker is still a prototype and caly drandle linear con-
straints over the reals. That proved to be sufficient for @secstudy, but we would
like to extend our approach to reason about more complexyla¢s like lists, sets and
arrays. In principle, this is not a problem; it all dependgiom availability of efficient
decision procedures for (the combination) of the theorfdists, sets and arrays.

References

1. M. Abadi and L. Lamport. An old-fashioned recipe for reale. InReal-Time: Theory in
Practice volume 600 oLNCS pages 1-27. Springer, 1992.

2. R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolirification of embedded sys-
tems.|EEE Trans. Software Engineering2:181-201, 1996.

3. T.Balland S. K. Rajamani. The SLAM toolkit. BAV'0], pages 260-264. Springer, 2001.

4. B. Boigelot and P. Wolper. Symbolic verification with petic sets. I'CAV'94, pages 55-67,
1994.

5. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Moduéaification of software com-
ponents in C. INCSE’03 pages 385-395, 2003.

6. G. Delzanno and A. Podelski. Model checking in CLPTACAS’'99 pages 223—-239, 1999.

7. H. Dierks and M. Lettrari. Constructing test automatafigraphical real-time requirements.
In FTRTFT'02 volume 2469 oL NCS pages 433-454, 2002.

8. J.S. Dong, P. Hao, S.C. Qin, J. Sun, and W. Yi. Timed pattd@0Z to timed automata. In
ICFEM'04, volume 3308 of.NCS pages 483-498. Springer, 2004.

9.

10.

11.

12.
13.

14.

15.

16.

17.

18.
19.

20.

21.

22.
23.

24.

25.

26.

27.

Model-Checking of Specifications Integrating Processega@nd Time 17

M. Franzle. Take it NP-easy: Bounded model construcfamnduration calculus. In
FTRTFT'02 volume 2469 oL NCS pages 234-264. Springer, 2002.

S. Graf and H. Saidi. Construction of abstract statptgravith PVS. InCAV’'97, pages
72-83, 1997.

T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. ladmstraction. IiPOPL'02 pages
58-70. ACM Press, 2002.

C.A.R. HoareCommunicating Sequential ProcessBsentice Hall, 1985.

J. Hoenicke and E.-R. Olderog. Combining specificaahhiques for processes data and
time. InIFM’02, volume 2335 oL NCS Springer, May 2002.

J. Hoenicke and E.-R. Olderog. CSP-OZ-DC: A combinatiospecification techniques for
processes, data and tinfgordic Journal of Computingd(4), 2002.

Jochen Hoenicke and Patrick Maier. Model-checking et#jzations integrating processes,
data and time. In J.S. Fitzgerald, 1.J. Hayes, and A. Tarledkors,FM 2005 volume 3582
of LNCS pages 465-480. Springer, 2005.

L. Lamport. The temporal logic of actionaCM TOPLAS$16:872-973, 1994.

A. Podelski and A. Rybalchenko. Transition predicatstralotion and fair termination. In
POPL’'05 pages 132—-144. ACM Press, 2005.

A.W. RoscoeThe Theory and Practice of Concurrendyrentice Hall, 1998.

A. Rybalchenko. A model checker based on abstractiomereent. Master’s thesis, Univer-
sitat des Saarlandes, Saarbriicken, Saarland, Septa@gtser

B. Sharma, P.K. Pandya, and S. Chakraborty. Boundedityathecking of interval duration
logic. In TACAS’05 volume 3440 o£.NCS pages 301-316. Springer, 2005.

J. U. Skakkebeaek. Liveness and fairness in duration lealcin CONCUR’94 pages 283—
298, 1994.

G. Smith.The Object-Z Specification Languad€luwer Academic Publisher, 2000.

J.M. Spivey. The Z Notation: A Reference ManuaPrentice-Hall International Series in
Computer Science, 2nd edition, 1992.

J. TapkenModel-Checking of Duration Calculus Specificatiof®hD thesis, University of
Oldenburg, June 2001.

S. Yovine. Kronos: A verification tool for real-time sgsts. International Journal of Soft-
ware Tools for Technology Transfelr(1+2), October 1997.

C. Zhou and M.R. Hansemuration Calculus: A Formal Approach to Real-Time Systems
EATCS: Monographs in Theoretical Computer Science. Sprir2p04.

C. Zhou, C.A.R. Hoare, and A.P. Ravn. A calculus of dorati Information Processing
Letters 40(5):269-276, 1991.

18 Jochen Hoenicke and Patrick Maier
A Proofs from Section 5

A.1 Proof of Theorem 4

Theorem 4 claims a back and forth correspondence betweemnitseof a PEAA =
(P,V,A C,E, s |,Py) and its TCS translatioff (A) = (Loc, Var, Init, Trang. In order
to prove this correspondence, we need a number of lemmas.

The first lemma relates satisfying valuations of a formpleontaining event vari-
ables to satisfying valuations of the formulge 5 € /€leceventss Which models events
as state change on event variables.

Lemma 6. Let V C V be a set of variables. For all formulas € £(V), for all V-
valuationsg and all (V U (V' N Events'))-valuationsa such that for all e Events,

B Eeiffal=e# €, wehaves = pifandonlyifa = ple® € /€eckvents

Proof. Note thatp[e 5 € /€lecevents iS defined by structural recursion over the formula
», Where the interesting cases aréeing atomic ana starting with a quantifier:

e € if p = ee€ Events

%) if ¢ is another atomic formula

Qe e/lﬂ[eaé e(/e]eeEvents if x=ec Events
wa[eaé e(/e]eeEvents otherwise

90[355 e,/e]eeEvents = {
wa [eaé e,/e]eeEvents = {

The claim of the lemma follows by a straightforward induetargument.]

The following lemma reveals details about how the rung) look like. In par-
ticular, the lemma states that the auxiliary variatike strictly alternates its value, and
that the odd states on the run are (almost) completely détethby their immediate
predecessors.

Lemma 7. Let{((¢y,), (1, 1), ...) be arun of7 (A).

1. Foralli >0, ai(len) > 0.

2. Foralli > 0, asi(disc) = false andusit1 (disc) = true.

3. Foralli > 0, €2i+1 = {9 and a2i+1|VUA = a2i|VUA and 042i+1|c = Oégi|c +
asi(len).

Proof. We prove each of the claims independently of the others.

1. By induction oni.
—i=0: o = Init(¢y) andf= Init(¢y) — len > 0.
—i>1: Asai_1 Uaqj |= Trang¥i_1,) andf= Trang4i_y, 4) — len” > 0, we
haveq; |=len > 0.
2. By induction on.
— i =0: Sincexg = Init(4y) andf= Init(¢y)——disc, we havey,(disc) = false
As ap U oy = Trang{y, ¢1) and = Trang{y, ¢1) — disc # disc’, we have
agp(disc) # ay(disc). Hencen, (disc) = true.

Model-Checking of Specifications Integrating Processesa@nd Time 19

— i > 1: Due to the fact thatvj_o U ob;_; &= Tranglai_o,¢5—1) and =
Trang lo; o, £9i_1) — discdisc’, we havensi o (disc) # awi_; (disc). Simi-
larly, asasi—1 Udd,; = Trangfai_1, £2i) andl= Trangfoi 1, £o) —discdisc’,
we havensi_1(disc) # asi(disc). Henceas;(disc) = asi—2(disc) and claim
follows by induction hypothesis.

3. Leti > 0. We know thatv,; Uad;, ; = —disc A disc’. Together withng U, =
Trang((o, £2i41), this impliesty = fo 11 andag U a1 = Aec € = C+len A
Axevua X =X by construction offrang (s, £2i11). Hence for alk € C, agi1(c) =
asi(C) + awi(len), and for allx € V U A, agi+1(X) = aai(X). o

Lemma 8 states the first half of Theorem 4, namely that theskation of a run of
the transition constraint systefi(.A) actually is a run of the phase event automaton

Lemma 8. For all runs r of 7 (A), r 4 is a run of A.

Proof. Letr = ((4o,), (¢1, 1), . ..). We have to show thay, satisfies the conditions
for runs of a PEA.

1. Sinceny = Init(4y), we know thatnit(¢y) # false sopy = £y € Po.

2. Letc € C. Sinceay = nit(¢y) andl= nit(¢y) — ¢~ 0, we know thatyy = c~ 0,
S070(€) = aglc(c) = ao(c) = 0.

3. Leti > 0. Case distinction.

— i =0. Sinceag [Init(4y) andf= Init(4y) — s(¢p) andpy = 4o, we know that
ag = S(Po). Hencely = aly = s(po)-

— i > 1. Sinceasi_1 Uab; = Trang¥lai_1, {5) andl= Trang lai—1, £2i) — S({ai)’
andp; = foi, we know thatagi_; U o = s(pi)’. Thusad = s(pi)’, so
asi = S(pi), henced = aaily = S(pi)-

4. Leti > 0andletd < § <t = aqi(len). We have to show that+ 6 = 1(p;), where
P = {2 and~y; = asilc. By convexity ofl (), it suffices to show that; = 1(p)
andyi +ti = 1(pi).

— For showing that = 1(p;), we distinguish two cases.

e i =0. Sinceag = nit(¢y) andl= Init(¢y) — 1 (¢y) andpy = 4o, we know
thatag = 1(po). Henceyo = aolc = 1(Po).

e i > 1. Due to the facts thatvwi_1 U o = Tranglsi_1, £2i) and =
Tranglai—1, £oi) — 1 (¢2i)" andp; = Lo, we know thatg 1 Uad;, = 1(pi)'
Thusay; = 1(pi)’, soag; = 1(pi), hencey, = asilc = H(pi)-

— For showing thaty 4+t = I(p;), we use the facts thatsi | = oailc +
agi(len) = ~ + ti and /o1 = fo by Lemma 7. Sincevy U oy =
TranE(fgi,ng_l) and|: TranE(EQi,EQi_H) — |(€2i+1)/ and Pi = Uy = €2i+1,
we know thatog U abiq = 1(pi). Thusag,; = 1(pi)’, SOaziv1 = 1(pi),
henceyi +ti = aait1lc = ().

5. Leti > 0. We know thatogi 1 U ag o = Trangflaii 1, £2i42). By Lemma 7, we
know furthermore thatwi;1 U o, = disc A —disc’. Thus, there exists an edge
(€2i+1, g, X, 1€2i+2) € E such thaU2i+1 U al2i+2 ': DiSC(g, X)

(a) Sincel= Disc(g, X) — g[e# € /€lecEventss We have thatri 1 U oo =
gle# € /€eckvents: And sincefree(gle # € /€lecevens) € VUV UAUA U
C, we know thata2i+1lv U al2i+2|V’ U a2i+1|c U (OéQH.l U O/2i+2)|AUA/ ':

20 Jochen Hoenicke and Patrick Maier

gle# € /€lecevents By Lemma 7,asi1|, = aaily andasitile = aailc +
asi(len), hences; Uﬁi/Jrl Ui+t U (ait1 Ual2i+2)|AuA, = gle# € /€lecEvents
By Lemma 6, this is equivalent t6 U 3/, ; Uy + t U xv, |, = g because
foralle € A aziy1 Uah, = exé€iff e e Yiff xy = e Finally,
GiU B Ui+t U x| F gis equivalenttos U S, Ui +iUxy, E 0
becausdree(g) N EventsC A.

(b) Sincef= Disc(g, X) = Acex € &0 A Acec\x € ~ €, we have thateiyi U
hitg [Neex © R0 A Acee\x €~ €, hencensi [c U agiysler [Acex ¢~
0 A Acec\x € &~ €. By Lemma 7,azit1|c = asilc + azi(len), so we have
Y F U E Acex € 0 A Agecix € =~ ¢, which is equivalent toy . =
(w +1)[X:=0].]

To prove the second part of Theorem 4, we provide an exptaitsiation of a run
r = {(Po, Bo,70), to, Yo, (P1,P1,71),t1, Y1, ...) of the PEAA to an infinite sequence
rra) = ((lo,a0), (¢1,1),...), which is defined inductively by the following equa-
tions:

lo = po
ap = PGo Uy U{len— ty} U {e— false| e € A} U {disc — false}
lojy1 = P
asip1 = Gi Uy +tu{len — i} Ui, U {disc — true}
loito = Pit1
agite = Giy1 Uxipr U {len — tiy 1} U
{e— —ayi(e) | ec i} U{e— azi(e) | ec A\ Yi} U {disc — false}

The following lemma asserts that the sequenggy), the translation of the PEA
runr, actually is a run of the TCF (A).

Lemma 9. For all runsr of A, rr(4) is arun of7(A).

Proof. Let r = ((po, B0, 70),to, Yo, (P1,51,71),11, Y1,...). We have to prove that
rra) = ((o, @), (¢1,a1), .. .) satisfies the conditions for runs of the TGSA).

1. Sincely = po € Py, Init(¢y) # false To see thaty, = Init(¢y), note that
— ap | \¢ec €~ 0 becausey| = o andyo(c) = 0 forallc € C,
ag = 1(4y) becausevy|c = vo = 1(po),
ag = S(¢4o) becausey |, = Bo = S(Po),
— ag [=len > 0 becausey(len) =t, > 0, and
— «ap = —disc becausey,(disc) = false
2. Leti > 0. For showing thaty U of, | |= Trang¢;, £i1 1), we distinguish two cases.
— i = 2j. We havely = (511 = pj, so it suffices to show thaty U oy =
Inv(p;)” A Cont To show thatwj U a4 = Inv(p;)’, it suffices to prove that
asj+1 = Inv(p;), which holds because of the following facts:
* a1 = () becausevyji|c =+t = 1(py),
o a1 = S(pj) becausevyyi|y, = G = s(p;), and
e ;1 [=len > 0 becausevy(len) =t > 0.

Model-Checking of Specifications Integrating Processesa@nd Time 21

To see thatwj U ay;,, = Cont note that
o g Uah,, = —disc A disc,
o agjUay | F AcecC ~C+lenbecausens1(C) = 7i(c) +ti = agj(c) +
asj(len) forall c € C, and
o ag Uy F Aeyun X = XbecaUS@j1lyp = U asjly = asly U
. 0{21'|A = ajlya- .
— i =2j+1. We havelyj1 = pj andlsj12 = pjy1. Asr is a run of the PEA4,
there is an edgfp;, 9, X, pj+1) € E such that
(@) G U G11 U (5 +4)Uxy = gand
(0) g1 = (75 +4)[X:=0].
We will show thatagj11 U ay, o = INV(pj41)" A Disc(g, X). To show that
Q2j41 LJo/QjJr2 = Inv(pj+1)’, it suffices to prove thatgjyo = Inv(pj11), which
holds because of the following facts:
e a2 = 1(pj+1) becausevjialc = yj+1 = H(Pj+1),
* asjio = S(Pj11) becauseryoly = 41 = s(pj+1), and
e a2 = len > 0 becausersjo(len) =t > 0.
To see thatwj+1 U a5 = Disc(g, X), note that
o a1 Uad , = disc A —disc/,
® Qg1 U015 5 Neex © R0 A Agee\x € = Cbecauseriofc = 741 =
(4 +4)[X:= 0] = (agj41[c)[X = 0], and
® a1 U o/QJ-Jr2 E gle# € /€lecevents because, well that's a bit more com-
plicated: For alle € A, xv, = eiff e € Yjiff ag11 Uah,, F e#
€ iff agjii|y U aho|p [€% €. Since we know thatvgj, 1|y ,c U
Aol Uxy, = BU (9 +14) U B Uxy, = g Lemma 6 implies that
asj1lvuc Y ol U anja|a U dhjiola = g€ % €/€ecevens Hence
g1 Uty yy = g€ € /€ecEvents. =
As expected (and proven by the following lemma), transtpéirrunr of the PEA
Ato arun of the TCS (\A) and then translating that run back to a rundyields the
same rurr.

Lemma 10. Forallruns r of A, (r7(4)) , =T-

Proof. Letr = <(p0, ﬁo,’}@),to, Yo, (pl; ﬁl,’yl),tl, Y1, .. > be a run of4 andrT(_A) =
((bo, ap), (£1, 1), .. .). To show thatrr(4)) , = 1, leti > 0. By case distinction on
i =0andi > 1, itis easy to see that

- pi = fai,

- G = aailys

- % = a2i|c, and
-t = agi(len).

Also for alle € A, asit1(€) = asi(€) # asit2(€) if and only ife € i, hence we obtain

Yi = {e€ Al ai1(€) # aait2(€)}- 0
Now, Theorem 4 follows immediately from the lemmas 8, 9 and 10

Theorem 4. Let.A be a PEA and/ (A) its TCS translation.

1. Forallrunsrof7(A), r4isarun of A.
2. For every runr ofd there is a rurf of 7 (.A) such that 4 =r.

22 Jochen Hoenicke and Patrick Maier

A.2 Proof of Corollary 5

Corollary 5 establishes a back and forth correspondeneesleetthe reachable states
ofa PEAA = (P,V,A,C,E, s, |,Py) and the TCS (A) = (Loc, Var, Init, Trans). We
will prove the two directions of the theorem as two separatenhas.

Lemma 11. For all states(¢, «) of 7(A), if (¢{,a) € Reacli7 (A)) then({,a)4 €
ReacliA).

Proof. If (¢,«) € Reacli7 (A)) then there is a rum = ((¢o,), ({1, 1), ...) Of
7 (A) and ani > 0 such that/, o) = (4, o). Case distinction.

— i = 2j. Then(4, aily, ailc) is thej-th state on the runy of A, so (4, aily, ailc)
is reachable ind.

—i=2j+1. ByLemma 7,4 = ¢_4 andai|v = ai_1|v andai|C = ai_1|c +
ai—i(len). The triple(4i—1, ai—1|y, ai—1|c) is thej-th state of the rum 4, so it is
reachable ind. Moreover, the duration of thith state isvi_; (len), and therefore
(4, aily, aile) = (e, ai—1ly, di—1]c + ai—1(len)) is reachable imA.]

Lemma 12. For all states(p, 3,) of A, if (p, 3,v) € ReacliA) then there is a state
(¢,) € React{7 (A)) such that(¢, o) 4 = (p, 5, 7).

Proof. Assume thatp, 5,v) € Reaclj.A). By the definition of reachability, there are
arunr = <(p05 607’)/0>,t07Y0, (pla 617’71>at17Y15 e > of An a pOSitioni > 0 and a
0 < ¢ <t suchthaip, 5,v) = (pi, Gi,7i + 9). Case distinction.

— 0 = 0. Forthe(2i)-th state(s;, aoi) Of r7(4)), We have(ls;, ani) € Reach7 (A))
and(fai, azi) 4 = (Lai, azily, a2ilc) = (pi, Bi, %) = (i, Bi, i +) = (P, B,7)

— ¢ = t;. Forthe(2i + 1)-th state({si; 1, aziy1) of rr(ay), we have(laiy1, aai1) €
Reacti7 (A)) and

(£2i+1; 042i+1)A = (f2i+1, 042i+1|\/7 a2i+1|c) = (f2i7 Oé2i|v7 Oé2i|c + a2i(|en))

= (piaﬂiaf}/i +tl) = (piaﬂiaf}/i +5> = (p,ﬂ,’y)

— 0 < ¢ < t. By Lemma 1, we can stutter theth state(p;, 5, i) of r with § and
obtain another runof A. So inf, thei-th state(p;, 5i, vi) lasts ford time units, and
the new(i+1)-th state(pi, 5i, v + 9) lasts fort; —4§ time units. Thus, for th&i+2)-
th state(£2i+2, 042i+2) of fT(A)), we know thal(ng_Q, a2i+2) S Reaci@T(A)) and
that (Cait2, azite) 4 = (Cait2, Qaitaly, @2it2|c) = (B, 6,7 +6) = (p,B,7). O

Obviously, Corollary 5 follows immediately from the lemmbkand 12.

Corollary 5. Let A be a PEA andl'(\A) its TCS translation.

1. Forall stateg(?,) of 7 (A), if (¢,) € Reac{7 (A)) then(¢, o) 4 € ReaclfA).
2. For all states(p, 5,7) of A, if (p,8,7) € ReacliA) then there is stat¢/, o) €
Reacli7 (A)) such that?, o) 4 = (p, 3,7)-

Model-Checking of Specifications Integrating Processesa@nd Time 23

B Translating the Elevator Specification to a TCS

In this appendix, we present the transition constraintsystobtained from translating
the CSP-0OZ-DC specification in figure 2. We assume that theifsgaion has already
be translated into a phase event automatigBlevator), given as a parallel product

-A(CSFEIevator) || -A(OZEIevator) H A(DC]-EIevator) || A(DCZEIevator);

where the PEAA(CSReevator) — See figure 4 — is the translation of the CSP part,
A(OZgjevator) is the translation of the OZ part, avt| DC1gjevaior) — See figure 5—and
A(DC2¢evator) — See figure 3 — are translations of the first and second DC fiaenu
respectively. Instead of translating the parallel proddElevator directly to a TCS
7 (A(Elevaton), we translate each of the four parallel components indadigiuFor
reasons of presentation, we factor out the constraintsrdetig the behaviour of the
auxiliary variablegdisc andlen into an auxiliary TCSZ,,x. That TCS also specifies
the behaviour of the “parameter” variablgsn andMayx, i. e., Toux does not constrain
the initial values oMin andMax (except thatMin must be less thamMax) but ensures
that they keep their initial values, so the parameters &llyidehave like symbolic
constants. All in all, we obtain the transition constraipstem 7gevaior s a fivefold
parallel composition

T(A(CSFEIevator)) H T(A(OZEIevator)) H T(A(DC]-EIevator)) H T(A(DCZEIevator)) || Taux,

the components of which are shown in the figures 6 to 10 below.

Being a prototype, the model checker ARMC currently canaoidte integers. Con-
sequently in our case study, we had to approximate the irgbyeeals, i. e., we relaxed
the integer variables to real variables. However, with thlaxation the invariant does
not hold any more. The reason is that whengbal floor is chosen (upon receiving a
newgoalevent) it need not be integral, it might bbés for instance. This might prevent
that thestopevent is ever generated, so the elevator might drive tod'éaprove the
invariant, we modified the system slightly. We replaced thie-deterministic choice of
goal by a loop that non-deterministically courgsal up or down in increments af;
the same abstraction of non-deterministic choice was usgd].iBecause this modifi-
cation neither is possible in the CSP automatCSR:jevator) NOr in the OZ automaton
A(OZgjevator) alone, we modify their product(CSRjevator) || A(OZgjevator) by adding
the non-deterministic counting loop, yielding a new auttimad (CSP-O%:od Elevator) -
Figure 11 shows the transition constraint system for thigdifrexl automaton.

Originally, ARMC was designed as a model checker for singleaded imperative
programs. Therefore, it cannot compute the parallel coitipnf the several input
TCS on the fly. Instead, we have to build the parallel comms#xplicitly in advance
and feed it to ARMC. Unfortunately, the size of the parall@nposition is the product
of the sizes of the components. To control the blowup, ndtémiumber of locations but
the number of satisfiable transition constraints, we refigettanslation from PEA to
TCS in the following way: When translating a transition frpmasep; to phasep,, we
conjoin the transition constraiffrangp;, p2) defined in section 5.2 with the state and
clock invariantss(p;) andl (p;). These additional conjuncts obviously do not change
the semantics, however, with these conjuncts, more tiansibnstraints in a parallel

24 Jochen Hoenicke and Patrick Maier

Loc = {po, p1, P2}
Var = {disc, start, stop passednewgoa}

true if p=po
Init(p) = (false if p=p:

false if p=p2
Po P1 P2
disc
startz start A starta start
A stop~ stog
Po A stop=s stog false
A passedv passed
A passedv passed
A newgoalr: newgoal
A newgoal# newgoal
disc
start~ start A start % start
A stop= stog
p1 false A stop=s stog
A passedv passed
A newgoal~ newgoal /\ passeds passed
(Trans(pi, b)) = A newgoalx newgoal
start~ start
A stop= stog
disc A passedv passedl
A starta start . A newgoal~ newgoal
p2| A stopz stog false disc
A passedv passed v
A newgoalx~ newgoal A startz star
A stop= stog
A passed¥ passed
A newgoal~ newgoal

Fig.6. TCS 7 (A(CSRuevator)) = (Loc, Var, Init, Trang), see figure 4; the rows in the matrix
(Trangpi, pj)) are indexed by the pre-locatiops the columns by the post-locatiops

composition will be unsatisfiable. In our case study, théniged translation cut down
the number of transitions in the parallel composition by enthian half.

ARMC is implemented in SICStus Prolog, using the built-imswaint solver for
linear arithmetic over the reals. That solver is tailoreddonstraint logic programming
rather than for general constraint solving. Therefore, tillhsive to modify the TCS to
bypass a number of limitations of the solver.

— The solver cannot project disequalities, so disequaktjgshave to be replaced by
disjunctionss >t v s< t.

— The solver accepts only conjunctive constraints, so evamtila in the transition
matrices has to be brought into disjunctive normal form, @each disjunct makes
up one transition.

Table 1 summarises our experiments with the model checkerfilst column lists
the different TCS checked: The first entry refers to the p@rabmposition described
above, the second to the same system where event variablesbban eliminated

Model-Checking of Specifications Integrating Processesa@nd Time

Loc = {po,p1}
Var = {disc, len, ¢z, passed

Init(p) = {

(Trang(pi,) =

Fig. 7. TCST (A(DClgievator)), Se€ PEA figure 5.

o~ 0 prIpo
false ifp=p:

Po

P1

—disc
A passedv passed
A Ch~ 2 +len

disc

Po Y A passed¢ passed
disc A Cha20
A passedv passed
A Ch =2 Gy
—disc
A passedv passed
disc AChrCy+lenAc, <3

p1| A passedz passet A c; ~ 3|V

A Ch =2 Gy

disc

A passedv passed
ACy~C ACy<3

25

(which is possible after computing the parallel compositiecause event variables
serve only to synchronise the components), and the thirdauth entry are the same
as the second, except that the PEADClgjeyator) @Nd.A(DC2:ievator) are omitted from

the parallel composition, respectively. The next threeieols show characteristics of

the systems: number of locations, number of state variahlesber of transitions (with

satisfiable constraint). Finally, the remaining columrsghow many refinement steps
ARMC performed, how many abstraction predicates it hadegathin the end to prove
safety or produce a real counterexample trace, and muchittitmek (in minutes and

seconds). All measurements were performed on a standaud Bi@ (2.6 GHz Pentium
4,512 MB RAM) running SICStus Prolog version 3.11.1.

ITCS [[locationgvariablegtransitiong refinementfpredicateftime (min:sec)
as described 24 13 149 2 64 84:21
w/o event variables 24 9 149 2 64 1:36
w/o A(DC1) 12 8 65| 1 33 0:15
w/o A(DC2) 6 8 43 2 26 0:15

Table 1. Results of model checking the elevator case study with ARMC.

Jochen Hoenicke and Patrick Maier

Loc= {po}
Var = {disc, current goal, dir, start, stop passednewgoa) Min, Max}
Init(po) = goal = current~ Min A dir = 0

Po

start~ start
A stop= stog
A passedv passedl
A newgoal~ newgoal
A current = current
A goal ~ goal
A dir’ ~ dir

disc
A start# start
A (goal > current— dir’ ~ 1)
A (goal < current— dir’ ~ —1)
A current ~ current
A goal ~ goal

(Trang(pi, pj)) = disc

Po A stop# stog A current= goal
A current & current

A goal ~ goal

A dir’ ~ dir

disc
A passed¥¢ passell
A current = current+ dir
A goal ~ goal
A dir’ ~ dir

disc
A newgoalz newgoal
A Min < goal' < Max A goal # current
A current & current
A dir’ ~ dir

Fig. 8. TCST (A(OZgievator)), Optimised by merging the two phases into one location.

Model-Checking of Specifications Integrating Processesa@nd Time 27

Loc = {po, p1, P2}
Var = {disc, len, c1, current goal, stop}

c1 =~ 0 A currentz goal if p=po

Init(p) = ¢ ¢1 =0 A currentx goal if p=p;
false if p=p2
Po P1 P2
—disc

A stop= stogd
ACy~ci+len

disc
A current oal
Po v #9 false AC~0
disc A current =~ goal
AC~c

A current % goal

—disc
A stop= stogd
ACy~ci+len

disc A current ~ goal
(Trang(pi, py)) = |p1| ACi=C1 y ~9 false
A current oal .
#9 disc
ACl~C

A current = goal

—disc
A stop= stog
ANcCi~ci+lenAnc) <2

. disc
disc current ~ goal
A ~c A stopz stog v A g
P2 1= AC~C

disc
A stop= stog
ACi~C Ac) <2
A current ~ goaf

A current % goal
#9 A current ~ goal

Fig.9. TCS7 (A(DCZ:evator)), S€€ PEA figure 3.

Loc= {po}
Var = {disc, len, Min, Max}
Init(py) = —disc A len > 0 A Min < Max

Po
(—disc A disc’ Vv disc A —disc”)
(Trang(pi,py)) =| . [Alen" >0
POl A Min’ & Min
A Max ~ Max

Fig. 10. TCS 7Zaux determining the behaviour of the auxiliary variabllisc, len and of the pa-
rametersvlin, Max.

28

Loc= {po, p1, P2}
Var = {disc, current goal, dir, start, stop passednewgoa) Min, Max}

Init(p) =

(Trang(pi, py)) =

Jochen Hoenicke and Patrick Maier

goal~ Min A current= Min A dir=0 if p=po
false otherwise
Po P1 P2
start ~ start’
A stop~ stod
A passedy passed
A newgoal~x newgoal
A current = current
A goal ~ goal
A dir’ ~ dir
disc
A start~ start disc
A stop~ stogd A start~ start
A passedy passed A stop~ stog
A newgoal~ newgoal | A passedv passed
Po| A goal > Min A newgoalz newgoal false
A current = current | A goal % current
A goal ~ goal — 1 A currenf ~ current
A dir’ ~ dir A goal = goal
disc A dir’ = dir
A start~ start
A stop~ stogd
A passedr passed
A newgoal~ newgoal
A goal < Max
A current = current
A goal ~ goal + 1
A dir’ =~ dir
disc
start = start’ A start % start
A stop~ stog A stop= stod
A passedx passed A passedx passed
p1 false A newgoalx newgoal | A newgoalr newgoal
A current = current | A current = current
A goal = goal A goal = goal
A dir’ ~ dir A (goal > current— dir’ & 1)
A (goal < current— dir’ &~ —1)
start ~ start
A stop~ stod
A passed passed
disc A newgoalx newgoal
A start~ start A current = current
A stop# stod A goal ~ goal
A passedr passed A dir’ ~ dir
p2| A newgoal~ newgoal false v disc
A current~ goal A start~ start’
A current = current A stop= stod
A goal ~ goal A passed¥ passed
A dir’ ~ dir A newgoal~ newgoal

A current = current+ dir
A goal ~ goal
A dir’ = dir

Fig. 11. TCST (A(CSP-OZnodcElevator)), Optimised by merging phases.

