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Abstract

Classical linear-time temporal logic (LTL) is capable of specifying of and
reasoning about infinite behaviors only. While this is appropriate for spec-
ifying non-terminating reactive systems, there are situations (e.g., assume-
guarantee reasoning, run-time verification) when it is desirable to be able to
reason about finite and infinite behaviors. We propose an interpretation of
the operators of LTL on finite and infinite behaviors, which defines an intu-
itionistic temporal logic (ILTL). We compare the expressive power of LTL
and ILTL. We demonstrate that ILTL is suitable for assume-guarantee rea-
soning and for expressing properties that relate finite and infinite behaviors.
In particular, ILTL admits an elegant logical characterization of safety and
liveness properties.
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1 Introduction

Linear-time temporal logic (LTL) [17] is a convenient specification language for
reactive systems. The underlying computational model is that of an infinite be-
havior, i. e., a non-terminating sequence of interactions between the system and
its environment, which makes LTL a specification language for infinite behaviors
only. In theory, this is not a problem because every reactive system with finite (and
infinite) behaviors can be transformed into one which exhibits only infinite be-
haviors. In practice, however, it is sometimes essential to reason about finite and
infinite behaviors simultaneously and, perhaps, to distinguish finite from infinite
behaviors. For example, in run-time verification one needs to relate observed (real)
finite behaviors to specified (ideal) infinite behaviors in order to determine whether
the observations violate the specification or not. Or, in modular verification, one
has to check that a component satisfies an assume-guarantee specification, which
amounts to checking that the component keeps satisfying the guarantee at least as
long an arbitrary environment satisfies the assumption. Here again, assumption and
guarantee are specified as sets of infinite behaviors whereas it is natural to view the
component as a prefix-closed set of finite (and possibly infinite) behaviors.

There are various suggestions as how to extend LTL to finite behaviors. For in-
stance, [12] extends the logic with weak and strong next operators whose interpre-
tations differ at the end of finite behaviors. Likewise, [7] interprets LTL formulas
by weak and strong semantics, which also differ on finite behaviors. In contrast,
we propose a semantics for LTL that treats finite and infinite behaviors uniformly.
Inspired from the above view of reactive systems as prefix-closed sets of finite and
infinite behaviors, our semantics is based on prefix-closed sets. This gives rise to
a Heyting algebra of prefix-closed sets rather than a Boolean algebra (because the
complement of a prefix-closed set need not be prefix-closed), so we end up with
ILTL, an intuitionistic variant of LTL. The idea of using the Heyting algebra of
prefix-closed sets of behaviors as the semantic basis for an intuitionistic logic can
also be found in [3], [2] and [13]. However, the interpretation of the temporal op-
erators of LTL in this Heyting algebra seems novel to this paper. Departing from
the semantic approach to temporal logic, [6] studies a fragment of ILTL, namely
the one generated by the temporal next-operator, using proof-theoretic methods.

In temporal verification, the classification of safety and liveness properties, in-
formally introduced by Lamport [11] and made precise by Alpern and Schnei-
der [4], plays an important role because many (deductive) verification methods are
applicable only to safety or liveness properties. Still, these methods are universal
thanks to the decomposition theorem [4] (and its effective versiowfoggular
properties [5]) stating that every linear-time temporal property can be expressed as
a conjunction of a safety and a liveness property. Clearly, a similar classification of
safety and liveness properties and a decomposition theorem for our intuitionistic
logic ILTL would be desirable. We present a novel abstract classification of safety
and liveness properties in a Heyting algebra, which is immediately applicable to
all intuitionistic linear-time temporal logics including ILTL, and we prove a de-



composition theorem. As the classification only uses the operators of the Heyting
algebras, we obtain a simple logical characterization of safety and liveness and an
effective decomposition theorem for free.

Over the years, there has been a body of work about safety and liveness. In
the direction of generalizing the topology-based results of Alpern and Schneider,
[9] proves a decomposition theorem for disjunctively complete Boolean algebras,
which [15] generalizes to modular complemented lattices. Our results subsume [9]
because every Boolean algebra is a Heyting algebra. However, a modular comple-
mented lattice need not be a Heyting algebra, and vice versa, so [15] is neither
subsumed nor does it subsume our results. Beyond linear-time, [14] proposes a
classification of safety and liveness for branching time. Concerning effective rea-
soning with safety and liveness properties, [12] gives syntactic characterizations
of safety and liveness properties in LTL with past operators; [18] does the same
without using past operators. Interestingly, in the introduction to [16], Plotkin and
Stirling shortly put forward some ideas about an intuitionistic linear-time tempo-
ral logic and a corresponding classification of safety and liveness properties. We
consider it likely that their ideas give rise to the same classification of safety and
liveness as ours.

Plan. Section 2 introduces some notation. Section 3 defines the intuitionistic tem-
poral logic ILTL, compares it to its classical companion LTL and illustrates the use
ILTL as a semantic basis for assume-guarantee specifications. Section 4 introduces
intuitionistic safety and liveness and compares these notions to the classical ones
proposed by Alpern and Schneider [4], and Section 5 presents a more abstract al-
gebraic view on intuitionistic safety and liveness. Section 6 concludes.

2 Preliminaries

Behaviors. We fix a non-empty sefl P of atomic propositions. BY;, we denote
the power set ofA P. Givenp € AP, we abbreviate the set of sets containjng
by ¥,,i.e, X, = {a € ¥ | p € a}. By ¥*°, we denote the set of non-empty
words over the alphabet. Words can be of finite or infinite length, S0 is
partitioned intoX ™ andX“, the sets of finite and infinite words, respectively. Here
in the context of discrete linear-time, a behavior is just a wordTh

Power set lattice of behaviors.By P(X°°) = (P(X*°),N,U), we denote the
power set lattice oE°, ordered byC. Frequently, we will refer to the elements of
this lattice as languages or properties.

We call a functionC' : P(X*°) — P(X*°) a closure operator o> if C'is
inflationary, idempotent and monotone, i.e., for&llL’ C ¥, L C C(L) and
C(C(L)) = C(L)andL C L' impliesC(L) C C(L'). We callC a topological
closure operator oR*° if C'is a closure operator which distributes over finite joins,
i e,C((Z)) = () and for allLy, Ly C X, C(Ll U Lg) = C(Ll) U C(LQ)



Boolean algebra of sets of infinite behaviors.Let inf : P(X*°) — P(X*°) be
defined by mapping a languad@eto inf(L) = L N X¥, the set of infinite behaviors
in L. Note thatinf is an endomorphism of the complete lattiPg3>°), in par-
ticularinf preserves infinite joins and meets. BYF, we denote the range aif,
i.e.,,INF = {inf(L) | L C 3>} = P(X¥). Due toinf being an endomorphism,
INF induces a sublattice gP(X°°), which turns out to be a complete lattice of
sets. In factINF = (INF,N,U, —, X% () is a complete Boolean algebra, where
the unary operator denotes complementation, i.e:L = {w € ¥ | w ¢ L}.

Heyting algebra of prefix-closed sets of behaviord.et < be the prefix order
on X, and letpref(w) = {u € £* | u < w} denote the set of all prefixes
of a behaviorw € ¥*°. Thus,pref : X — P(X*) is a function from be-
haviors to languages. We extend the domairpaff to languages in the usual
way, i.e., we defingref : P(X*) — P(X%°) by pref(L) = [, pref(w).
Note thatpref is a closure operator oli>°, which is why we call a language
in the range ofpref prefix-closed. Moreovempref preserves infinite joins, yet in
general, it does not preserve meets, not even finite one?/BYF, we denote
the range ofpref, i.e., PREF = {pref(L) | L C X*°} is the set of prefix-
closed languages. Despipeef not preserving all meetd?REF induces a com-
plete sublattice ofP(X°°), which turns out to be a complete lattice of sets. In
fact, PREF = (PREF,N,U,=,X () is a complete Heyting algebra, i. e., for
all languaged.1, Lo, € PREF there is a greatest languagec PREF, namely
L = {w € ¥ | pref(w) N Ly C Lo}, such thatl,; N L C Ly. We call L the
relative pseudo-complement 6f and L, and denote it by, = L.

3 Linear-Time Temporal Logics

The set of formulagiorm of the linear-time temporal logics considered in this
paper is defined by the following grammar, when@nges over the atomic propo-
sitions A P, andy ands) range ovetForm.

Form:==T|L|p|leAy |V | o=y | n¢ | Xe |Fo |Gy | Ut | oW

Fory, v € Form, we treatp < ¢ as a shorthand fdrp — ¢) A (¢p — ¢). To save
on parenthesis, we adopt the convention that the unary operaforegation), X
(next),F (eventually) ands (always) have the highest binding power, followed by
the binary operatortJ (until) andW (weak until). The remaining binary operators
follow with binding power decreasing in the usual order frarfconjunction) tov
(disjunction) to— (implication) to< (equivalence).

We say that a formula is in negation normal form (NNF) if it does not contain
implication nor equivalence and negation is applied only to atomic propositions.



Mod,(T) = 2¥ Mod(L) =10
Mode (¢ A ¢) = Modc(p) N Mod. () Mod. (=) = —Mode(¢)
Mod (¢ V ) = Mode () UModc(¢)  Mode(p — 1) = Mode (=g V 1))
Mod¢(p) = E,2% ={w e ¥¥ | Ja € ,Tu € ¥ : w=au}
Mod.(X¢) = next.(Mod.(¢))
Mod.(¢ U) = U, ., untilnext[Mod.(¢), Modc(4)]%(0)
Mod.(¢ W ¥) = ), ,, untilnext[Mod.(¢), Mod. ()] (X¢)
Mod.(Fyp) = J, <., nexty (Modc(¢)) = Mod(T U ¢)
Mod.(Gy) = ), <, next{ (Modc(¢)) = Mod.(¢ W 1)

Figure 1: Classical interpretation of formulas.

3.1 Classical Semantics

By interpreting formulas over the Boolean algelffslF', we provide a semantical
definition of the classical linear-time temporal lodi@'L*, where the classical in-
terpretation functioMod.. : Form — INF is defined recursively in figure 1. This
definition makes use of the monotone functianst. anduntilnext[L;, Lo]. (with
parameterd;, L» € INF) on INF, which map a languagg to next.(L) = XL
anduntilnext[L1, La].(L) = Lo U (L1 Nnext.(L)), respectively.

Given sets of formula® and ¥, we say thatb classically entailsl, denoted
by @ |=c ¥, if N ep Mode(p) € (yey Modc(¥). If @ is a singleton sefe},
we may omit set braces and wrie |=. ¥ in place of{¢} =, ¥; similarly for
U = {¢}. If @ is the empty set, we may write. ¥ in place of() =, . We call
1 a classical tautology if=. ¥

3.2 Intuitionistic Semantics

Similar to the classical logi€TL above, we define an intuitionistic variant called
ILTL by interpreting formulas over the Heyting algel®&R EF', where the intu-
itionistic interpretation functiodMod; : Form — PREF is defined recursively in
figure 2. This definition uses the monotone functianst; anduntilnext|[L;, Lo);
(with parameterd.;, L, € PREF) on PREF, which map a language € PREF

to next;(L) = ¥ U XL anduntilnext[L;, Lo]i(L) = Lo U (L1 N next;i(L)), re-
spectively.

Given sets of formula® and ¥, we say thatd intuitionistically entails¥,
denoted by® | U, if () cp Modi(¢) C [yeq Modi(¢). As in the classical
case, we may omit set braces around single formulas, and we may omit the empty
set on the left-hand side. We callan intuitionistic tautology if=; 1.

Proposition 1. For all formulasy and, ¢ |=; ¢ if and only if|=; ¢ — .

Although presented differently, this semantics agrees with the standard semantical definition of
LTL, cf. [17] or [8].



Mod;(T) = X°° Mod;(L) =0
Mod;(¢ A 1) = Mod; () N Mod; (¢) Mod; (¢ — ¢) = Mod;(¢) = Mod;(¢)
Mod; (¢ V 1) = Mod;(p) U Mod;(¢)) Mod;(—¢) = Mod;(¢ — L)
Modi(p) = L, UE,E° ={w € > |Ja € £,3u € ° : w=a Orw=au}
Mod;(X¢) = next;(Mod;(¢))
Mod;(¢ U ) = |, ., untilnext[Mod;(¢), Mod;(¢)]{*(0)
Modi(¢p W 9) = [, ., untilnext[Mod; (), Mod;(¢)]{* (£*°)
Mod;(Fy) = |, .., next{(Mod;(¢)) = Mod;(T U ¢)
Modi(Gg) = (<., next{(Mod;(y)) = Modi(¢ W L)

Figure 2: Intuitionistic interpretation of formulas.

Proof. Let g, € Form. Theny |=; ¢ if and only if Mod;(¢) € Mod;(v) if and
only if Mod;(¢) = Mod;(¢) = £ ifand only if = ¢ — 9 O

In summary, the definition of the intuitionistic semantics is largely analogous to
the definition of the classical semantics, except for the intuitionistic interpretation
of implication and negation and a slight difference in the treatment of the next
operator. Note that these differences are forced by the cé&tRéiF of the Heyting
algebra, as the classical interpretations do not result in prefix-closed sets.

3.3 Expressive Power

Comparing the expressive powerBT'L andILTL amounts to comparing the sets

of behaviors that can be specified by formulas in these logics. Unfortunatgly,

and ILTL interpret formulas over the two different algebtBNF and PREF,

so we cannot directly compare their interpretations. However, using the defining
mappingsinf : P(X>°) — INF andpref : P(X*>°) — PREF of these algebras,

we can map the carrier of each algebra to (a subset of) the carrier of the other and
thus compare.

Expressive power idNF. First, we compard. 7L and/LTL in the Boolean al-
gebra of sets of infinite behaviof&NF, i. e., we restrict the intuitionistic semantics
to infinite words viainf. The proposition below relates the semantics for formulas
in negation normal form. From this proposition follows that intuitionistic entail-
ment of formulas in NNF implies classical entailment and thatNvF', ILTL is at
least as expressive a9'L.

Proposition 2. If ¢ is a formula in NNF thetMod,.(¢) = inf(Mod;(¢)).
Proof. By induction ony.
e The base cases (the constantand 1, atomic propositions and negated

atomic propositions) are obvious.
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e Conjunction and disjunction are straightforward sinng distributes over
intersection and union.

e Note that for allL € PREF,
next.(inf(L)) = ¥inf(L) = inf(X U XL) = inf(next; (L)) .
Therefore, for the next operator (second equality by induction hypothesis)
Mod.(X¢) = nextc(Mod.(¢))
= next(inf(Mod;(¢)))

= inf(next;(Mod;(p)))
= inf(Mod;(X¢)) .

e Note that for allL, L1, L, € PREF,

untilnext[inf(L;), inf(La)]c(inf (L)) = inf(Ls) U (inf(L1) N nexte(inf(L)))
= inf(Ly) U (inf(L;) Ninf(next;(L)))
= inf(Ly U (L1 Nnext;(L)))
= inf(untilnext|[L;, Lo];(L)) .
Therefore, for the until operator (second equality by induction hypothesis)

Mod.(¢ U ) = U, ., untilnext[Mod. (o), Mod. ()]7 ()
= Un <., untilnext[inf (Mod;(¢p)), inf(Mod;(¢))]2 (inf (0))
= U, <, inf(untilnext[Mod;(¢), Mod; (1) (9))
= inf(lJ,, ., untilnext[Mod;(y), Mod; ()] (0))
= inf(Modi(p U ¢)) .
Similarly, for the weak until operator

Mod.(¢ W ¥) =1, ., untilnext[Mod.(¢), Mod.(4)]¢ (£¢)
= <., untilnext[inf(Mod;(¢)), inf (Mod; (z/))]7 (inf (£°°))
= [, <., inf(untilnext[Mod;(¢), Mod; (¢)]7 (X))
= inf(),, ., untilnext[Mod;(¢), Mod; (¢)]7 (X))
= inf(Mod;(¢ U 1)) .

¢(
¢(

e The operator§ andG can be reduced t&y andW, respectively. O
Corollary 3. Let® and¥ be sets of formulas in NNF. & |=; ¥ then® =, V.
Proof. Assumed =; V0, i. e.,ﬂw@ Mod;i(p) C ﬂweq, Mod;(v). Then

Npeo Mode(p) = N, eq inf(Modi(y))
= inf((),cp Modi(¢))
€ inf((yey Modi(¢))
= ﬂwe\p inf(Mod; (%))
= ﬂwe\p Mod,(v) ,
where the first and the last equality hold by Proposition 2. Hénee, V. O

6



Corollary 4. In INF, ILTL is at least as expressive a4'L.

Proof. We have to show that for every € Form there isiy) € Form such that
Mod.(¢) = inf(Mod;(%)). This is true because evegycan be transformed into
an equivalent formulay in NNF by replacing implications and pushing in nega-
tions. HenceMod.(¢) = Mod.(¢) = inf(Mod;(1))) by Proposition 2. O

It is unknown whether the converse of Corollary 4 is also true, i. e., whether for
all formulast there exist formulag such thatinf(Mod; (1)) = Mod.(¢). We
conjecture that this is the case. However, this seems difficult to prove since in in-
tuitionistic logics, we cannot use equivalence transformations to normal forms like
NNF.

Expressive power ilPREF. Now, we compard.TL andILTL in the Heyting
algebra of prefix-closed sets of behavid?REF, i.e., we extend the classical
semantics into prefix-closed sets yiegef. The proposition below shows that the
two logics cannot be equally expressiveRR EF'.

Proposition 5. There is no formulg with pref(Mod.(¢)) = ¥ = Mod;(X1).

Proof. Lety € Form. If Mod.(¢) = () thenpref(Mod.(¢)) = 0 # X. Otherwise
there isw € Mod.(¢), sopref(Mod.(¢)) # X becausev € pref(Mod.(y)) and
w e XY, O

This implies that either the two logics are incomparabldGFL is strictly more
expressive tharlTL, but it is not known which case holds true. We conjecture
that /L TL is more expressive thabT'L, yet proving this, i. e., proving that for all
formulasy there exist formulag) such thatpref(Mod.(¢)) = Mod; (), might
require a lemma similar to Proposition 2. However, such a lemma seems difficult
to obtain. In particular, the proof of Proposition 2 cannot be directly adapted since
it exploits the fact thainf distributes over intersections, whighef does not do.

3.4 Application: Assume-Guarantee Specifications

Modular verification naturally demands for so-called assume-guarantee specifica-
tions (A-G specs), which are pairs of formulas in some temporal logic. Informally,

a component of a system satisfies an A-G speé v if the component satisfies

the guarantee) at least as long as its environment (including the other compo-
nents) meets the assumptipnOnce A-G specs are available for all components,
properties of the global system may be deduced from the composition (i. e., con-
junction) of these A-G specs instead of the (potentially large) parallel composition
of all components. Due to possibly circular dependencies between assumptions and
guarantees, composing A-G specs in a sound way requires non-trivial compaosition
rules, see for instance [1], [10] or [13].



In the Heyting algebra of prefix-closed sets of finite behaviors, [3] demonstrates
that under a suitable notion of concurrency (shared variables and interleaving ex-
ecution) an A-G spe@ - 1) corresponds to an intuitionistic implicatian— 1,
which gave rise to composition rules based on conjunction of intuitionistic implica-
tion. Later, Abadi and Merz [2] found a more general interpretation of the operator
-, which again can be reduced to intuitionistic implication. Here, we present their
interpretation of ™ in PREF, the Heyting algebra of prefix-closed sets of finite
and infinite behaviors. Fap, ) € Form, the semantics ap = ) is defined by

Modi(p =5 ¥)
={w € X | Vv € pref(w) : prefl(v) C Mod;(y) impliesv € Mod;(¢)} ,

wherepref! : ¥>° — PREF maps behaviors to their sets of proper prefixes, i. e.,
pref!(v) = pref(v)\{v}. By well-founded induction on the prefix order, [2] proves
that for allp, ¢ € Form,

Mod;i(p = 1) = Modi((¢ — ¢) — ) .

Hence inPREF, A-G specs are merely short hands for intuitionistic implication.
This fact is exploited in [2] to develop concise soundness proofs of various proof
rules for conjoining circularly dependent A-G specs.

A general observation about composition rules for A-G specs is that they essen-
tially only admit circular dependencies on safety properties. In classical linear-time
temporal logics, this can be achieved by decomposing properties into their safety
and liveness parts — which is always possible thanks to the decomposition theo-
rems in [4] and [5] — and disallowing circular dependencies on the liveness parts.
Therefore, it is natural to ask for similar decomposition theorems for intuitionistic
temporal logics.

4 Safety and Liveness

In this section, we introduce notions of safety and liveness for the intuitionistic
temporal logic/ILTL and compare them to the corresponding notions/f6f. as
proposed by Alpern and Schneider [4]. Actually, Alpern and Schneider did not
define safety and liveness fofl'L but for the Boolean algebtBVF of sets of infi-

nite behaviors, over whichT'L formulas are interpreted. Consequently, we define
safety and liveness for the Heyting algeld® EF of prefix-closed sets of finite
and infinite behaviors.

4.1 Safety and Liveness in Classical Logics

We start by reviewing the standard notions of safety and liveness for classical
linear-time temporal logics as introduced in [4]. There, safety and liveness are de-
fined in terms of a topology o&“ — in fact, the Cantor topology ok if X



is finite — which is induced by the topological closure operatbron X with
Ce(L) = {w € ¥ | pref(w) Nt C pref(L)} forall L C . We callL € INF
aclassical safety property L is closed, i.e.(.(L) = L, and aclassical liveness
propertyif L is dense, i.e.C.(L) = X¢.

As closed sets of a topological space, classical safety properties are closed
under finitary disjunction and infinitary conjunction. And as dense sets, classical
liveness properties are closed under infinitary disjunction and under implication.

Proposition 6. Letw € >, let L1, Lo € INF and letL C INF.

1. ¥¥ is a classical safety property.

2. () is a classical safety property.

3. {w} is a classical safety property.

4. If L, and L, are classical safety properties then salisU Ls.

5. Ifall L € £ are classical safety properties then s¢is . L.
Proposition 7. Let Ly, L, € INF and letL C INF.

1. X¥ is a classical liveness property.

2. If someL, € L is a classical liveness property then sq s . - L.

3. If Ly is a classical liveness property then sdlis=- Lo = — L1 U Ls.

It is instructive to see which logical operations do not preserve classical safety or
liveness properties. In the following examples,detndg be atomic propositions.

e Neither safety nor liveness properties are closed under negation. For in-
stance Mod.(Gp) is a safety property bublod.(—Gp) = Mod.(F-p)
is a liveness property.

e Safety properties are not closed under implication. EMpd.(Gp) and
Mod.(Gq) are safety properties bdod.(Gp— Gq) = Mod.(F-pV Gq)
is a liveness property.

e Safety properties cannot be closed under infinitary disjunction. Otherwise,
everyL € INF would be a safety property because= |J,,. {w}-.

e Liveness properties are not closed under intersection. Elgl.(GFp) and
Mod.(FG—p) both are liveness properties bMtod.(GFp A FG—p) =
Mod.(GFp A =GFp) is not.

The (trivial) property>* is the only one which is both a safety and liveness prop-
erty, but there are many properties which are neither. E. g Mod.(p U q) is

such a property becaugg(L) = Mod.(pU ¢V Gp) # LandC.(L) # X*. How-

ever, [4] at least proves that all properties in classical linear-time temporal logics
can be decomposed into their safety and liveness parts.
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Proposition 8. Every L. € INF is the conjunction of a classical safety and a
classical liveness property. More precisely= C.(L) N (—C.(L) U L).

4.2 Safety and Liveness in Intuitionistic Logics

To transfer the notions of safety and liveness to the Heyting algBR& F', we
generalize the closure operatQy : P(X¥) — P(X¥) to G : P(X®°) — P(X*)

by defining Ci(L) = {w € X | pref(w) N X1 C pref(L)}. It turns out that

C} is a topological closure operator Qi and hence induces a topology — in
fact, it induces the Scott topology o0 (ordered by the prefix order) i is
countable. Thus, we can reuse the topological definitions of safety and liveness and
call L € PREF anintuitionistic safety propertyf C;(L) = L and anintuitionistic
liveness propertyf Ci(L) = X°°.

Note that(; is algebraically definable il R EF because for alL € PREF,

C(L) = {w € ¥ | pref(w) N T C L} = X+ = L. Therefore,L is an
intuitionistic safety property ifSt = L = L iff ¥t = L C L, andL is an
intuitionistic liveness property ift+* = L = 2> iff ¥* C Liff ST UL = L.

For comprehending these algebraic definitions, the following intuition might help.
Safety and liveness properties differ fundamentally in the way they constrain finite
and infinite behaviors. If a safety property is refuted then it can always be refuted
by a finite behavior, whereas a liveness property can never be refuted by a finite
behavior. So one could say that a safety propdrtgssentially only constrains
finite behaviors in the sense that whenever all finite prefixes of an infinite behavior
w satisfy L (i.e.,w € ¥ = L) thenw satisfiesL. Likewise, a liveness property

L essentially only constrains infinite behaviors in the sense that all finite behaviors
satisfy L.

Intuitionistic safety and liveness properties are closed under essentially the
same logical operations as their classical counterparts. Moreover, intuitionistic
safety properties are closed under (intuitionistic) implication and negation, and
intuitionistic liveness properties are closed under infinitary conjunction.

Proposition 9. Letw € ¥X*°,letL, L1, Ly € PREF and letL C PREF.
1. ¥*°is an intuitionistic safety property.
. 0 is an intuitionistic safety property.

. pref(w) is an intuitionistic safety property.

. Ifall L € £ are intuitionistic safety properties then sofi, - L.

2
3
4. If L1 and L, are intuitionistic safety properties then solis U Ls.
5
6. If Lo is an intuitionistic safety property then solis = L.

7

. If L is an intuitionistic safety property then so-isl. = L = (.

10



Proof. Claims 2 and 3 follow from the definition of safety becaise= ) = 0
andXt = pref(w) = {v € 3% | pref(v) NXT C pref(w)} = pref(w). All other
claims follow from Propositions 15 and 17 and Corollary 16, see next section.

Proposition 10. Let L1, L, € PREF and letL C PREF.
1. ¥*°is an intuitionistic liveness property.
2. If someL, € L is an intuitionistic liveness property then sdi§ . - L.
3. If Lo is a intuitionistic liveness property then solis = L.
4. Ifall L € £ are intuitionistic liveness properties then sqig - L.
Proof. Follows from Proposition 18, see next section. O

We notice that intuitionistic safety properties are not closed under infinitary dis-
junction, for the same reason as in the classical case. And intuitionistic liveness
properties are not closed under (intuitionistic) negation. EVigdl;(Fp) is a live-

ness property butlod;(—=Fp) = Mod;(L) is not.

Similar to the classical cas&> is the only property which is both an intu-
itionistic safety and liveness property, cf. Proposition 20. Again, there are many
properties which are neither; this follows from Proposition 13 below. Yet, there is
also the following decomposition theorem.

Proposition 11. Every L. € PREF is the conjunction of an intuitionistic safety
and an intuitionistic liveness property. More precisdly= (X1 = L)N (ST UL).

Proof. Follows from Proposition 19, see next section. O

So far, our approach to safety and liveness was purely semantical, relying only
on the operators of the Heyting algebPRR EF and the constant ™. However,
these operators correspond to the intuitionistic connectivésBE, andX+ is ex-
pressible infLTL, namely:* = Mod;(FL). Immediately, this gives us a simple
logical characterization of intuitionistic safety and liveness and a logical formula-
tion of the decomposition theorem.

Corollary 12. Lety be a formula.
1. ¢is an intuitionistic safety property if and onlyff; (FL — ¢) — .
2. @ is an intuitionistic liveness property if and onlyHf; F L — .
3. i (FLop)AFLVY).

Proof. The claims 1 and 2 follow from the definitions of safety and liveness, re-
spectively, and from Proposition 1. Claim 3 follows from Proposition 11, Propo-
sition 1 (twice) and the fact that; v, < 19 follows from |=; ; — ¢y and
Ei 19 — 1y for all ¢y, 19 € Form. O
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4.3 Classical versus Intuitionistic Safety and Liveness

In Section 3, the mappingsaf : P(X*°) — INF andpref : P(X*°) — PREF

were used to compare the expressive power of the ldgidsand /LTL. Now, we

will use the same mappings to investigate the relationship between the classical
notions of safety and liveness and their intuitionistic counterparts.

It turns out that the intuitionistic notions of safety and liveness subsume the
classical ones because every classical safety resp. liveness property is mapped to a
corresponding intuitionistic property viaref. However, only the classical notion
of safety subsumes the intuitionistic one in the sense that every intuitionistic safety
property is mapped to a corresponding classical propertindid-or liveness this
is not the case. For instancg; is an intuitionistic liveness property to which no
corresponding classical property exists, in particitléf>") = () is not a classical
liveness property.

Proposition 13. Let L € INF.

1. L is a classical safety property iffref (L) is an intuitionistic one.

2. Lis aclassical liveness property ifiref(L) is an intuitionistic one.

Proof. The first claim holds becaudeis a classical safety property

iff Vw e X¥: pref(w) N3t C pref(L) impliesw € L

iff Vw e X :pref(w) N Xt C pref(L) impliesw € pref(L)

iff VweX®:we Xt = pref(L)impliesw € pref(L)

iff Xt = pref(L) C pref(L)

iff pref(L) is an intuitionistic safety property.
The second claim holds becaukes a classical liveness property if and only if
Vw € 3¢ : pref(w) N X+ C pref(L) if and only if ©+ C pref(L) if and only if
pref(L) is an intuitionistic liveness property. O

Proposition 14. Let L € PREF.

1. If L is an intuitionistic safety property theénf(L) is a classical one.

2. Ifinf(L) is a classical liveness property thénis an intuitionistic one.

Proof. To show the first claim assume that = L C L. To showC,(inf(L)) =
inf(L), letw € ¥ with pref(w)NX* C pref(inf(L)) and prove that € inf(L),
i.e.,w € L. We havepref(w) N X+ C pref(inf(L)) C pref(L) = L. Hence
pref(w) C ¥ = L C L, which impliesw € L.

To show the second claim assume thatinf (L)) = ¥«. Thus, we hav&™ C
pref(inf(L)) C pref(L) = L,i.e.,X* C L. O

Note that the statements of Proposition 14 cannot be reversed. To see this let
Mod;(F_L vV Gp), wherep is an atomic proposition. Theinf(L) = Mod.(Gp).
Thus,inf(L) is a classical safety property blit™ = L = ¥*° = [, soL is not an
intuitionistic safety property. HoweveX," C L, so L is an intuitionistic liveness
property butinf(L) is not a classical one.
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5 Algebraic Characterization of Safety and Liveness

In this section, we develop notions of safety and liveness and prove a decompo-
sition theorem for arbitrary Heyting algebras. Thus, we provide abstract algebraic
proofs for the claims of the previous section about safety and liveness in the con-
crete Heyting algebra of prefix-closed sets of behavidRsEF .

Let H = (H,Mn,U,=, T, L) be a Heyting algebra. We denote the order rela-
tion on this algebra biyC. Recall that{ H, 1, LI) is a distributive lattice withT and
1 andforallz,y,z € H, 2 C x = yifand only if x M z C y. This equivalence
can be seen as the definition of=- y, the pseudo-complement afrelative to
y. Forz € H, we denote by—x the pseudo-complement of which is defined
as—z = x = L. Note that if the law of excluded middle holds H (i.e., if
zU—z=Tforalz e H)thenz =y =—z Uy.

By J (H), we denote the join-irreducible elementshh wherej € H is join-
irreducible iffj #£ | and forallz,y € H, j = z LUy impliesj = x or j = y. Note
that forj € J(H) andz,y € H, j C 2 Uy impliesj C x or j C y becausdd
is distributive. We call a subsét C H join-dense inH iff for every z € H there
existsT C S such thatr = | |T. We call a subset C H a forest iff for each
x € S, thesetl’ = {y € S| y C x} induces a linear suborder &1, i. e., for all
u,v €T, u CovorvC u.

Throughout this section, we fix an arbitrary elemer¢ H, relative to which
we will define safety and liveness. H, thisa plays the role oE" in PREF ,i.e.,
it separates the ‘finite’ from the ‘infinite’ behaviors. Remarkably, the closure prop-
erties (except for closure under negation) and the decomposition theorem below
hold independent of the choice of Thus inPREF, we may well choose non-
standard separating elements, for instahgdo define interesting non-standard
notions of safety and liveness.

5.1 Safe Elements

We define the functiorafe, : H — H by safe,(x) = a = x. The functionsafe,
is a closure operator, hence we calle, the safety closureWe call an element
x € H a-safeif x is a fixpoint of this closure, i. esafe,(z) = .

We investigate whether safe elements are closed under the operations of the
Heyting algebra and hence under the corresponding intuitionistic connectives. It
turns out that safe elements are closed under implication and conjunction, even
under infinitary conjunction. Whether safe elements are closed under negation de-
pends onl being safe.

Proposition 15. Letx,y € H, and letS C H such thaf ]S exists.
1. T is a-safe.
2. Ify is a-safe thenr = y is a-safe.

3. Ifall s € S are a-safe therj | S is a-safe.
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Figure 3: A Heyting algebra wheresafe elements are not closed under join.

Proof. Assume thay and alls € S area-safe.
1. safe,(T)=a=T=T.

2. safe,(r=y) =a=(x=y) = (aNz)=y = (zMa)=y =z=(a=y) =
x = y, where the last equality holds becauysie a-safe.

3. safe,([15) = a=[15 = [legla = 5) = [1,cgs = [15, where the
second equality holds because completely distributes over meets on the
right-hand side, and the third equality holds because atea-safe. O

Corollary 16. The following statements are equivalent:
1. Forall z € H, if z is a-safe then-z is a-safe.
2. 1 isa-safe.
Proof. 1 implies 2 becauseg is a-safe. 2 implies 1 becauser =z = 1. O

In general, safe elements are not closed under disjunction. For instance, in the
Heyting algebra in figure 3, andc area-safe because = b = b anda = ¢ = ¢,
buta = (bUc¢) = a=a = T, sobU cis nota-safe. Yet, if the Heyting algebra
H satisfies a natural condition, namely that the join-irreducible elements form a
join-dense forest, then safe elements are closed under finite disjunction.

Proposition 17. Let 7 (H ) be a forest, which is join-dense H. Letx,y € H. If
x andy are a-safe thenc Ll y is a-safe.

Proof. Let z andy bea-safe, i.e.a = 2 C x anda = y C y. We have to show
thatx Uy isa-safe,i.e.a= (x Uy) C z Uy.

As the join-irreducibles are join-dense, there/isC 7(H) such tha{ | J =
a=(xUy). Foreachj € J,we knowthatj C a= (xUy),s0jMNa C zUy, and
we have to show thgtC = U y.

We claim thatj C a = x or j C a = y. This claim implies thayj C = Ll y.
To see this note that in the first cage- a« = = C = C x Ll y holds because is
a-safe, and in the second cag& a = y C y C x U y holds becausg is a-safe.

Now, we prove the above claim by contradiction, i. e., we assumeé tiai=-x
andj Z a = y. Thisimpliesj Ma Z x andj Ma £ y.
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As the join-irreducibles are join-dense, there/isC J(H) such that | J' =
jMa.AsjMa lZ xandjMa Z y, there exisk, ! € J' with k IZ x andl Z y. Note
thatk,/C jMNaC j.

As J(H) is a forest, the sefi € J(H) | ¢ C j} is linearly ordered, in
particulark C [ or] C k.

If K Cithenl Z x andl Z y, sol IZ x LIy because is join-irreducible, which
contradictd C jMa C z Uy. And if | C k thenk Z x andk [Z y, SOk [Z x L y,
which contradictge C jMa C z L y. O

Note that in the Heyting algebra in figure 3, safe elements fail to be closed un-
der disjunction because the join-irreduciblesc and T do not form a forest.
However, in the Heyting algebr® REF of prefix-closed sets of behaviors, the
join-irreducibles are the prefix-closures of single behaviors, /€ PREF) =
{pref(w) | w € ¥°°}. Obviously,7 (PREF) forms a forest, which is join-dense

in PREF. Hence, safety properties RREF are closed under finite disjunction.

5.2 Live Elements

We define the functiotive, : H — H by live,(xz) = a U 2. The functionlive,
is a closure operator, hence we datk, theliveness closuréNe call an element
x € H a-liveif z is a fixpoint of this closure, i. elive, (z) = x.

Similar to the case for safe elements, we investigate whether live elements are
closed under the operations of the Heyting algebra and hence under the corre-
sponding intuitionistic connectives. It turns out that live elements are closed under
implication and under finitary and infinitary conjunction and disjunction.

Proposition 18. Letz,y € H, and letS,T C H such tha{ | S and| | T exist.
1. T isa-live.
2. Ifyisa-live thenx = y is a-live.
3. Ifall s € S area-live then[] S is a-live.
4. If somety € T is a-live then| | T is a-live.
Proof. Assume thay and alls € S area-live, and letty € T bea-live.
1. liveg(T)=alUT =T.

2. Aslive,(y) =aly =y, we haven C y = y M (z = y) C = = y. Hence
liveg(z=y) =al(x=y) =x=y.

3. Aslivey,(s) = alUs = sforalls € S, we havea C sforall s € S, so
a C[]S.Hencelive,([15) =aU[]S=]]S.

4. live,(JT) =aU | |T =aUtoU T =toU||T = | T, where the third
equality holds becaugg is a-live. O
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5.3 Decomposition Theorem

With the above notions of safety and liveness, just simple reasoning with the laws
of Heyting algebras proves that every element of the algebra can be decomposed
into a conjunction of a safe and a live part.

Proposition 19. Everyxz € H is the meet of an-safe and arm-live element. More
preciselyx = safe,(z) Mlivey ().

Proof. safe,(z) Mlive,(z) = (a=2z)M(alz) = ((a=2z)Ma)U((a=>z)Nz) =
(aMx) Uz = x, where the third equality holds due to the cancellation laws for the
relative pseudo-complement in Heyting algebras, which saythaj=z) = yMz
and(y=z)MNz=zforally,z € H. O

The above decomposition might be trivial, for instance in the casertig@both
safe and live. However, the following proposition shows that this cannot happen
for non-trivial x because safe and live elements are separated.

Proposition 20. No non-trivial element irH is botha-safe anda-live. More pre-
cisely, ifx € H is a-safe andu-live thenz = T.

Proof. Letz € H bea-safe andi-live. Thenz = safe,(x) = safe,(livey(z)) =
a=(aUx) = T, where the last equality holds becayse = = T forall y,z € H
with y C z. O

Whether there are elements which are neither safe nor live (so that the above de-
composition is really non-trivial) depends on the Heyting algebra. For example, all
elementsin figure 3 aresafe (L, b, ¢, T) ora-live (a, T). However as shown in the
previous section, in the Heyting algebPaR EF' of prefix-closed sets of behaviors,
there are elements which are neitber-safe nor ™ -live.

Finally, we note that when the Heyting algehfh happens to be a Boolean
algebra, the definition of the liveness closure can be reduced to the safety closure,
as itis the case in most decomposition theorems, see for instance [4] or [15].

Proposition 21. If the law of excluded middle holds i then for allz € H,
live, (z) = safe,(x) = =.

Proof. safe,(z) = = = = U —safe,(z) =

x =z)=zU—(—alUuz)
zU(@N—z)=(zUa)N(zU—-2z)=(zUa

NT =xUa = livey(x).

Ol

6 Conclusion

We have presented.T'L, an intuitionistic variant of the linear-time temporal logic

LTL, which is capable of specifying sets of finite and infinite behaviors simulta-
neously. The intuitionistic nature ofLTL comes in handy when doing assume-
guarantee reasoning, because special temporal operators that have been introduced
to reason about assume-guarantee specifications are definable via the intuitionistic
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implication. Furthermore, we have given an abstract algebraic definition of notions
of safety and liveness suitable for intuitionistic temporal logics. These intuition-
istic notions are similar to the classical ones, yet they are more compatible with
the logical connectives; in particular, intuitionistic liveness properties are closed
under conjunction. The logi€LTL admits an elegant logical characterization of
intuitionistic safety and liveness. It remains to be investigated whether our abstract
algebraic definition of safety and liveness also applies to other intuitionistic tem-
poral logics, €. g., to intuitionistic variants of CTL.

There are a still number of unresolved questions concerning the Iagi€.
The exact expressive power should be determined, one should give an axiomatiza-
tion, and one should address decidability and complexity of the satisfiability and
model checking problems. WhethArTL can be considered a useful specification
language depends on the answers to these questions.
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