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Abstra
t

Cir
ular assume-guarantee reasoning is used for the 
ompositional veri�
a-

tion of 
on
urrent systems. Its soundness has been studied in depth, perhaps

be
ause 
ir
ularity makes it anything but obvious. In this paper, we inves-

tigate 
ompleteness. We show that 
ompositional 
ir
ular assume-guarantee

rules 
annot be both sound and 
omplete.
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1 Introdu
tion

The goal in 
ompositional veri�
ation of 
on
urrent systems is to prove that

a 
omplex system, a parallel 
omposition of several subsystems, satis�es a


omplex property, a 
onjun
tion of several simpler properties. In prin
iple,

veri�
ation tools 
an atta
k su
h a goal dire
tly, at least if the 
omplex

system is �nite still. However, the state spa
e of the system may be expo-

nentially larger than that of any subsystem | a phenomenon 
alled state

explosion | whi
h may 
ause veri�
ation to be
ome intra
table in pra
ti
e.

Compositional veri�
ation tries to use the modular stru
ture of 
omplex

systems and properties to de
ompose intra
table veri�
ation tasks into a

bun
h of smaller, hopefully tra
table subtasks; ideally, ea
h subtask only

establishes properties of a single subsystem in isolation. Later, one dedu
es

from all these subtasks via a suitable proof rule that the original 
omplex

system satis�es the desired 
omplex property.

Systems, Properties. We model systems and properties uniformly as

elements of S = hS;^; 1;�i, a meet-semilatti
e with one, i. e., a partial

order hS;�i with greatest element 1 in whi
h the greatest lower bound x^y

of any two elements x and y exists. In this model, the expression x � y 
an

have three di�erent readings depending on whether x and y denote systems

or properties, respe
tively. If both are systems then x � y means that x

re�nes y, if both are properties then it means that x entails y, and if x is a

system and y a property then x � y expresses that x satis�es y. Likewise,

x ^ y denotes 
omposition if x and y are systems, it denotes 
onjun
tion

if x and y are properties, and if x is system and y a property then x ^ y

| x 
onstrained by y | is the 
oarsest re�nement of x that satis�es y.

Thus, all we require of systems (properties) is that re�nement (entailment)

is an order and that 
omposition (
onjun
tion) is an asso
iative 
ommutative

and idempotent operation whi
h respe
ts the order. Se
tion 4 will show that

this abstra
t algebrai
 setting already suÆ
es for proving in
ompleteness of


ir
ular assume-guarantee reasoning. In parti
ular, no notion of 
omputation

is required, unlike in the proofs for soundness.

Example 1. Meet-semilatti
es are a natural model for systems and prop-

erties. For instan
e, in (linear-time) temporal veri�
ation, often one views

systems and properties as languages over some non-empty (and possibly

in�nite) alphabet �. In this setting, re�nement and entailment 
orrespond

to language in
lusion, and 
omposition and 
onjun
tion 
orrespond to lan-

guage interse
tion, so we have a meet-semilatti
e stru
ture. How that meet-

semilatti
e a
tually looks like, depends on the type of properties we want to

verify.

By the 
hara
terization in [3℄, safety properties are expressible as pre�x-


losed �-languages. I. e., a safety property may be viewed as a subset L of
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�

�

su
h that for all w 2 �

�

, if w belongs to L then all pre�xes of w belong

to L, too. So for veri�
ation of safety properties, the meet-semilatti
e is the

set of pre�x-
losed �-languages (over �). Note that these are exa
tly the

languages generated by (possibly in�nite) labeled state transition graphs,

whi
h are a natural representation of systems. In general, when verifying

arbitrary temporal properties, the meet-semilatti
e will be the set of !-

languages (over �), i. e., the power set of �

!

. Here, natural representations of

systems and properties are some more elaborate variants of state transition

graphs, for instan
e fair transition systems [15℄ or (possibly in�nite state)

!-automata [21℄.

Proof Rules. In general, there are two kinds of proof rules for 
omposi-

tional veri�
ation, non-
ir
ular and 
ir
ular ones. We show some examples

to demonstrate the di�eren
e. Let s

1

; s

2

2 S be systems and let p

1

; p

2

2 S

be properties and suppose we want to verify that the 
omposition of s

1

and

s

2

satis�es the 
onjun
tion of p

1

and p

2

. (1) shows two non-
ir
ular rules

for this purpose. Both rules de
ompose the goal into two subgoals, where

the subgoals of the �rst rule state that system s

i

satis�es property p

i

, or

in other words: s

i

guarantees p

i

. The se
ond rule di�ers only in the se
-

ond subgoal, whi
h states that s

2


onstrained by p

1

satis�es p

2

, or in other

words: if p

1

is assumed then s

2

guarantees p

2

| hen
e the wide-spread term

assume-guarantee rule.

s

1

� p

1

s

2

� p

2

s

1

^ s

2

� p

1

^ p

2

s

1

� p

1

p

1

^ s

2

� p

2

s

1

^ s

2

� p

1

^ p

2

(1)

Going one step further and also introdu
ing an assumption in the �rst sub-

goal, we obtain the 
ir
ular rule (2).

p

2

^ s

1

� p

1

p

1

^ s

2

� p

2

s

1

^ s

2

� p

1

^ p

2

(2)

Unlike the non-
ir
ular rules, (2) is unsound; for instan
e, if both systems

are 1, the greatest element in S, and both properties are equal and di�erent

from 1 then both premises hold but the 
on
lusion does not. As soundness is

indispensable, rule (2) must be restri
ted by a side 
ondition whi
h ex
ludes


ases as the one above. Su
h 
ir
ularity-breaking side 
onditions do exist;

in fa
t, quite a number of restri
ted variants of (2) are proven sound (by

indu
tion usually) in the literature, see [1, 4, 13, 18, 22℄ to name just a few.

Completeness. As there are many variants of sound 
ir
ular assume-

guarantee rules, the question arises whether some are better than others.

An important 
riterion for rating rules is the restri
tiveness of the side 
on-

dition; if the side 
ondition is overly restri
tive the rule is appli
able to few


ases only, hen
e it is 
onsidered worse than a variant with a less restri
tive
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side 
ondition (as long as that variant is sound still). In the best 
ase, the

rule is 
omplete, i. e., the side 
ondition is true whenever premises and 
on-


lusion are true. Thus, the side 
ondition of a 
omplete rule does not restri
t

the rule unne
essarily sin
e it is true whenever the rule should be appli
able.

Note however, that the side 
ondition is not redundant in 
omplete rules; it

may still be indispensable for proving soundness.

Compositionality. Re
all that 
ompositional veri�
ation seeks to redu
e

a large, intra
table goal into many smaller subgoals. The rules in (1) and (2)

support this approa
h as the premises of these rules are less 
omplex than

their 
on
lusions. In parti
ular, no premise involves the 
omposition of the

systems s

1

and s

2

any more, so veri�
ation of the subgoals is more likely to be

tra
table than dire
t veri�
ation of the goal. However, when using a 
ir
ular

rule whi
h is restri
ted by a side 
ondition, it does not suÆ
e to verify

the subgoals that arise from the premises; additionally, we need to prove

that the side 
ondition holds. It may be the 
ase that this proof requires to


onsider both systems simultaneously | e. g., for establishing some mutual

ex
lusion property | and thus involves some aspe
ts of the 
omposition,

whi
h is against the spirit of 
ompositional veri�
ation. Therefore, a rule


an be 
alled 
ompositional only if 
he
king the side 
ondition is possible

without taking into a

ount both systems simultaneously, i. e., only if the

side 
ondition is expressible as a boolean 
ombination of sub-
onditions,

ea
h of whi
h involves at most one of the systems.

Plan. Se
tion 2 formally presents proof rules whi
h are restri
ted by a

side 
ondition and de�nes soundness and 
ompleteness. Se
tion 3 spe
i�es

what we mean by 
ir
ular assume-guarantee reasoning in the 
ontext of


ompositional veri�
ation and formalizes the pre
ise requirements for rules

to be 
ompositional. Se
tion 4 proves the main result that 
ompositional


ir
ular assume-guarantee rules 
annot be both sound and 
omplete. Finally,

Se
tion 5 dis
usses related work and Se
tion 6 
on
ludes.

2 Inferen
e Rules

Terms, Formulas. We �x a set of variables Var. Terms are built indu
-

tively from variables in Var, the nullary operator >, 
alled top, and the

binary operator u, 
alled meet. We 
onsider top neutral w. r. t. meet, whi
h

is seen as asso
iative, 
ommutative and idempotent. We 
all a term t atomi


i� t is a variable or t is top. By var(t), we denote the set of variables o

uring

in t, and we say that a term t

0

is a subterm of t i� var(t

0

) � var(t).

A formula ' is a pair ht; t

0

i of terms, written as t v t

0

. We refer to t as

the left-, to t

0

as the right-hand side of '. We 
all a formula trivial i� its

right-hand side is >. We denote the set of variables o

uring in ' by var('),
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i. e., var(') = var(t) [ var(t

0

), and for every set of formulas �, we de�ne

var(�) =

S

'2�

var(').

Truth, Entailment. We �x S = hS;^; 1;�i, a non-trivial meet-semilat-

ti
e with one. By Val, we denote the set of valuations, i. e., the set of total

fun
tions from Var to S. We extend a valuation � to terms in the 
anoni
al

way, i. e., �(>) = 1 and �(t

1

ut

2

) = �(t

1

)^�(t

2

). Note that we may view any

term t as a total fun
tion from Val to S by de�ning the fun
tion appli
ation

t(�) as �(t).

We say that a formula t v t

0

is true under a valuation �, denoted by

� j= t v t

0

, i� �(t) � �(t

0

). We extend truth to sets of formulas, i. e., � j= �

i� � j= ' for all ' 2 �.

We say that � entails 	, denoted by � j= 	, i� for all � 2 Val, � j= �

implies � j= 	. We say that � is equivalent to 	, denoted by � � 	, i�

� j= 	 and 	 j= �. Note that in sets of formulas the operators top and

meet are redundant on right-hand sides sin
e for terms t; t

0

1

; t

0

2

, we have the

equivalen
es ft v >g � ; and ft v t

0

1

u t

0

2

g � ft v t

0

1

; t v t

0

2

g.

Complexity of Entailment. We have de�ned entailment relative to a

�xed semilatti
e S. We may abstra
t from this stru
ture and de�ne entail-

ment w. r. t. the variety of meet-semilatti
es with one. However, this would

not 
hange anything, as entailment w. r. t. that variety 
orresponds to entail-

ment w. r. t. the two-element meet-semilatti
e 2 = hf0; 1g;^; 1;�i, and vi
e

versa. The deeper reason for this is a representation theorem [5, 20℄ whi
h

states that every meet-semilatti
e is isomorphi
 to a sub-meet-semilatti
e

of a produ
t of 
opies of 2. This implies that in every non-trivial meet-

semilatti
e, uniform word problems yield the same answers as in 2. The

same holds for entailment, for one 
an translate every formula t v t

0

into

the equation t u t

0

:

= t and every equation t

:

= t

0

into the set of formulas

ft v t

0

; t

0

v tg. As a 
onsequen
e, de
iding entailment is in Co-NP.

A
tually given a �nite set of formulas � and a formula  , de
iding � j=  

is linear in the size of � and  . To see this, note that we 
an 
atten � and

 su
h that all right-hand sides are variables

1

and every left-hand side is

either a variable or a meet of two variables. This 
an be done by repeatedly

repla
ing every subterm xuy with x; y 2 Var by a new variable z and adding

the equation z

:

= x u y (translated into the three formulas z v x, z v y and

x u y v z) to �. This transformation preserves entailment and the blow up

of � is only linear in the size of the original formulas. Now, we may view

2 as the two-element boolean algebra be
ause ^ 
orresponds to 
onjun
tion

and (the 
hara
teristi
 fun
tion of) � to impli
ation. Thus in 2, the formula

x

1

u : : : u x

m

v y

1

u : : : u y

n

may be seen as the propositional formula

stating that the 
onjun
tion of the x

i

implies the 
onjun
tion of the y

j

. In

1

We assume without loss of generality that � [ f g does not 
ontain trivial formulas.
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fa
t, if � and  are 
attened, then ea
h formula dire
tly 
orresponds to a

propositional Horn 
lause. Hen
e, the problem of de
iding � j=  is redu
ed

(with a linear blowup due to 
attening) to entailment of propositional Horn


lauses, whi
h is known to be de
idable in linear time [6℄.

Relations. Let X, Y and Z be sets and let n 2 N. Given n fun
tions

f

1

; : : : ; f

n

: X ! Y and an n-ary fun
tion g : Y

n

! Z, we de�ne the n-ary


omposition of g and f

1

; : : : ; f

n

as the fun
tion g[f

1

; : : : ; f

n

℄ : X ! Z su
h

that for all x 2 X, g[f

1

; : : : ; f

n

℄(x) = g(f

1

(x); : : : ; f

n

(x)).

Let n 2 N, let t

1

; : : : ; t

n

be n terms and let C : S

n

! f0; 1g, i. e., C is

the 
hara
teristi
 fun
tion of an n-ary relation on S, the 
arrier of our �xed

meet-semilatti
e S. Viewing terms as fun
tions from Val to S, the fun
tion

C[t

1

; : : : ; t

n

℄ : Val! f0; 1g is well-de�ned | it is the 
hara
teristi
 fun
tion

of some set of valuations | and we say that C is asso
iated with the terms

t

1

; : : : ; t

n

. Note that for every enumeration x

1

; : : : ; x

m

of a superset of the

variables o

uring in the terms t

1

; : : : ; t

n

there is a unique fun
tion C

0

:

S

m

! f0; 1g su
h that C

0

[x

1

; : : : ; x

m

℄ = C[t

1

; : : : ; t

n

℄. Therefore, without

loss of generality, we may assume that the asso
iated terms are variables.

A relation � is an n-ary fun
tion C : S

n

! f0; 1g asso
iated with n

variables x

1

; : : : ; x

n

, i. e., � = C[x

1

; : : : ; x

n

℄. We denote the set of variables

o

uring in � by var(�), i. e., var(�) = fx

1

; : : : ; x

n

g.

We de�ne a notion of truth for relations, similar to the one for for-

mulas. We say that a relation C[x

1

; : : : ; x

n

℄ is true under a valuation �,

denoted by � j= C[x

1

; : : : ; x

n

℄, i� C[x

1

; : : : ; x

n

℄(�) = 1. Rewriting this

with the de�nition of n-ary 
omposition, we see that � j= C[x

1

; : : : ; x

n

℄

i� C(�(x

1

); : : : ; �(x

n

)) = 1. We say that a relation � is true i� � j= � for all

� 2 Val. Note that every set of formulas � may be expressed by an equiv-

alent relation �

�

with var(�

�

) = var(�), where for all valuations �, � j= �

i� � j= �

�

. However, relations are stri
tly more expressive than formulas.

For instan
e, inequality of two distin
t variables x and y is not expressible

by formulas, i. e., there is no set of formulas � su
h that for all � 2 Val,

� j= � i� �(x) 6= �(y).

Inferen
e Rules. An inferen
e rule (or rule, for short) R is a triple

h�;  ;�i, where the premises � are a �nite set of formulas, the 
on
lu-

sion  is a formula, and the side 
ondition � is a relation. We say that R is

synta
ti
 i� the side 
ondition � is true. We write a rule R as R : �= if �

or

R :

'

1

: : : '

m

 

if C[x

1

; : : : ; x

n

℄

when � = f'

1

; : : : ; '

m

g and � = C[x

1

; : : : ; x

n

℄. If R is synta
ti
 then we may

omit the side 
ondition and write R : �= , simply. Without loss of generality

we will assume that the right-hand sides of all premises are atomi
 and that
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var( ) [ var(�) � var(�), i. e., every variable of the 
on
lusion or the side


ondition o

urs in the premises.

Soundness, Completeness. Let R : �= if � be an inferen
e rule. We say

that R is sound i� for all valuations �, � j= � and � j= � implies � j=  . We

say that R is synta
ti
ally sound i� � j=  . Note that synta
ti
al soundness

implies soundness, and every sound synta
ti
 rule is synta
ti
ally sound. To

point out a di�eren
e between the two notions of soundness, note that we 
an


he
k algorithmi
ally (and eÆ
iently) whether a ruleR : �= if C[x

1

; : : : ; x

n

℄

is synta
ti
ally sound, whereas 
he
king whether R is sound may well be

unde
idable, depending on the properties of the meet-semilatti
e S and the

fun
tion C : S

n

! f0; 1g.

We say that R is 
omplete i� for all valuations �, � j= � and � j=  

implies � j= �. Note that every synta
ti
 rule is 
omplete, trivially. Also

note that for synta
ti
ally sound rules 
ompleteness is not an issue, as every

synta
ti
ally sound rule R : �= if � 
an be transformed by omitting the

side 
ondition into the (sound and 
omplete) synta
ti
 rule R

0

: �= . Hen
e,

there is no reason why a synta
ti
ally sound rule should be restri
ted by a

side 
ondition.

Example 2. Assume that S = hS;^; 1;�i is the four-element meet-semilat-

ti
e whi
h is not a 
hain. Let s

1

, s

2

, p

1

and p

2

be four distin
t variables,

where we think of the s

i

as representing systems and of the p

j

as representing

properties. We de�ne the rules R

1

and R

2

, where

R

k

:

p

2

u s

1

v p

1

p

1

u s

2

v p

2

s

1

u s

2

v p

1

u p

2

if C

k

[s

1

; s

2

; p

1

; p

2

℄

and for all a; b; 
; d 2 S, C

1

(a; b; 
; d) = 1 i� 
 and d are in
omparable,

and C

2

(a; b; 
; d) = 1 i� a ^ b � 
 and a ^ b � d. Both rules are sound

as both side 
onditions are restri
tive enough to prevent unsound 
ir
ular

reasoning. R

2

is trivially 
omplete as C

2

[s

1

; s

2

; p

1

; p

2

℄ is equivalent to the


on
lusion. However, R

1

is in
omplete as, for instan
e, it is not appli
able

to the (trivial) 
ase when both properties equal 1. Note that the relation

C

1

[s

1

; s

2

; p

1

; p

2

℄ is not expressible by formulas, whi
h demonstrates that the

language of side 
onditions is more expressive than languages of premises

and 
on
lusions.

3 Assume-Guarantee Rules

Assume-Guarantee Rules. We 
all an inferen
e rule R : �= if � an

assume-guarantee rule (or A-G rule, for short) i� for all premises ' 2 �, the

left-hand side of  and the right-hand side of ' do not share any variables.

We 
all an A-G rule R : �= if � 
ir
ular i� � 6j=  .
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R

3

:

s

1

v p

1

s

2

v p

2

s

1

u s

2

v p

1

u p

2

R

6

:

p

2

u s

1

v p

1

p

1

u s

2

v p

2

s

1

u s

2

v p

1

u p

2

R

4

:

s

1

v p

1

p

1

u s

2

v p

2

s

1

u s

2

v p

1

u p

2

R

7

:

p

3

u s

1

v p

1

p

1

u s

2

v p

2

s

1

u s

2

v p

1

u p

2

R

5

:

p

3

u s

1

v p

1

p

1

u s

2

v p

2

p

3

u s

1

u s

2

v p

1

u p

2

R

8

:

p

1

u s

1

v > p

2

v s

2

p

1

u s

1

v s

2

u p

2

Figure 1: Sample assume-guarantee rules

Example 3. As the de�nition of A-G rules does not involve the side 
on-

dition, we may illustrate it using synta
ti
 rules only, see �gure 1. There,

s

1

, s

2

, p

1

, p

2

and p

3

are �ve distin
t variables, where the system/property

distin
tion is as in example 2.

The rules R

3

, R

4

and R

5

are non-
ir
ular A-G rules. Note the se
ond

premise of R

4

, whi
h may be read as assuming the property p

1

the system

s

2

guarantees the property p

2

. Likewise, the 
on
lusion of R

5

may be read

as assuming p

3

the 
omposition of s

1

and s

2

guarantees both p

1

and p

2

. This

should explain where the term assume-guarantee rule 
omes from.

The rules R

6

, R

7

and R

8

(and also R

1

and R

2

from example 2) are 
ir-


ular A-G rules as they are not synta
ti
ally sound. The term 
ir
ular is

justi�ed for R

6

, whose premises express 
ir
ular assume-guarantee depen-

den
ies between the properties p

1

and p

2

. For R

7

and R

8

, however, there is

no 
ir
ularity in the premises. In the 
ase of R

7

, unsoundness arises from the

unresolved assumption p

3

; 
ompare to R

5

where that assumption is resolved.

R

8

is unsound be
ause it is nonsense, it serves to demonstrate that not ev-

ery assume-guarantee rule has a meaningful reading. So, the term 
ir
ular

should not be taken literally, rather it is an abstra
tion 
apturing the most

important property of 
ir
ular assume-guarantee reasoning, namely its la
k

of synta
ti
al soundness.

The following propositions provide an alternative 
hara
terization of 
ir
u-

larity resp. a suÆ
ient 
riterion for the truth of the premises of an A-G

rule.

Proposition 1. An A-G rule R : �=t

 

v t

 

0

if � is 
ir
ular if and only if

� 6j= t

 

v x for some x 2 var(t

 

0

).

Proof. This follows from the obvious 
onverse that � j= t

 

v t

 

0

if and only

if for all x 2 var(t

 

0

), � j= t

 

v x.

Proposition 2. Let R : �=t

 

v t

 

0

if � be an A-G rule and let � be a

valuation. If for all x; y 2 var(�) n var(t

 

),

7



1. � j= t

 

v x implies �(x) = 1, and

2. � 6j= t

 

v x and � 6j= t

 

v y implies �(x) = �(y),

then � j= �.

Proof. Assume that the 
onditions 1 and 2 hold for all x; y 2 var(�)nvar(t

 

).

Let t v t

0

2 �. If t

0

= > then obviously � j= t v t

0

. If t

0

6= > then t

0

= x

for some x 2 var(�) be
ause we assume all right-hand sides of premises

to be atomi
. Furthermore, x =2 var(t

 

) by de�nition of A-G rules. Case

distin
tion.

� � j= t

 

v x. Then �(x) = 1 by 
ondition 1, so �(t) � �(t

0

), i. e.,

� j= t v t

0

.

� � 6j= t

 

v x. Then there exists y 2 var(t) su
h that � 6j= t

 

v y.

To see this, assume that � j= t

 

v y for all y 2 var(t); this would

mean � j= t

 

v t, whi
h by t v x 2 � would yield the 
ontradi
tion

� j= t

 

v x. Furthermore, y =2 var(t

 

) as otherwise � j= t

 

v y

trivially. Hen
e, we know that �(x) = �(y) by 
ondition 2, whi
h

yields �(t) � �(t

0

), i. e., � j= t v t

0

.

A-G Rules for Compositional Veri�
ation. As already hinted in ex-

ample 3, for the purpose of veri�
ation we distinguish systems and prop-

erties, so we partition our variable set Var into system variables s

i

and

property variables p

j

. Se
tion 4 will show that already the 
omposition

of only two systems exhibits the in
ompleteness of 
ompositional 
ir
ular

assume-guarantee reasoning, so a
tually we 
an restri
t the variable set to

Var = fs

1

; s

2

g ℄ fp

1

; p

2

; p

3

; : : : g.

The goal of 
ompositional veri�
ation is to establish that the 
ompo-

sition of some systems (in our 
ase, s

1

and s

2

) guarantees some property

(possibly assuming some other property). So for an A-G rule to be useful

for 
ompositional veri�
ation, s

1

u s

2

must be a subterm of the left-hand

side of the 
on
lusion, whi
h we will impli
itly assume hen
eforth. Thus,

without loss of generality we may assume that an A-G rule R is presented

in the form

R :

'

1

: : : '

m

t

 

v t

 

0

if C[s

1

; s

2

; p

1

; : : : ; p

n

℄

where s

1

u s

2

o

urs as a subterm in t

 

and var(f'

1

; : : : ; '

m

; t

 

v t

 

0

g) =

fs

1

; s

2

; p

1

; : : : ; p

n

g. The latter requirement 
an always be a
hieved by re-

naming some property variables and extending and reordering the asso
i-

ated variables in the side 
ondition. By the de�nition of A-G rules, var(t

 

)\

var(t

0

) = ; for every premise t v t

0

, so t

0

2 f>; p

1

; : : : ; p

n

g as we assume the

right-hand sides of premises to be atomi
.

8



Compositionality. Let R : �= if C[s

1

; s

2

; p

1

; : : : ; p

n

℄ be an A-G rule. We

will 
all R 
ompositional if it avoids the system 
omposition s

1

u s

2

in the

premises as well as in the side 
ondition. Formally, we say that R is 
ompo-

sitional in the premises i� s

1

us

2

is not a subterm of any left-hand side in �.

We say that R is 
ompositional in the side 
ondition i� C[s

1

; s

2

; p

1

; : : : ; p

n

℄ is

expressible as a boolean 
ombination of relations whose asso
iated variables

either do not in
lude s

1

or s

2

. I. e., R is 
ompositional in the side 
ondition i�

there are r

1

; r

2

2 N, a (r

1

+r

2

)-ary boolean fun
tion F : f0; 1g

r

1

+r

2

! f0; 1g

and r

1

+ r

2

(n + 1)-ary fun
tions C

1

1

; : : : ; C

r

1

1

; C

1

2

; : : : ; C

r

2

2

: S

n+1

! f0; 1g

su
h that

C[s

1

; s

2

; ~p℄ = F

�

C

1

1

[s

1

; ~p℄; : : : ; C

r

1

1

[s

1

; ~p℄; C

1

2

[s

2

; ~p℄; : : : ; C

r

2

2

[s

2

; ~p℄

�

(3)

where ~p abbreviates the enumeration p

1

; : : : ; p

n

. We say that R is 
omposi-

tional i� it is 
ompositional in the premises and in the side 
ondition.

One may think of the above fun
tions C

k

i

as abstra
ting the system s

i

together with the properties p

1

; : : : ; p

n

to a boolean value. A
tually, we 
an

relax the above de�nition of 
ompositionality in the side 
ondition from

boolean to arbitrary �nitary abstra
tions C

k

i

. I. e., R is 
ompositional in the

side 
ondition i� there are a �nite set D and r

1

; r

2

2 N and F : D

r

1

+r

2

!

f0; 1g and C

1

1

; : : : ; C

r

1

1

; C

1

2

; : : : ; C

r

2

2

: S

n+1

! D su
h that the equation (3)

holds.

Example 4. Re
all the A-G rules R

1

to R

8

from the examples 2 and 3.

All these rules are 
ompositional in the premises, and the synta
ti
 rules R

3

to R

8

are 
ompositional in the side 
ondition, trivially. The rule R

1

is also


ompositional in the side 
ondition but R

2

is not.

4 In
ompleteness of Compositional Rules

Before we go about to establish our main in
ompleteness result, we need to

set up two te
hni
al pie
es of ma
hinery. First, we prove Lemma 3, a purely


ombinatorial proposition about the infeasibility of 
ertain boolean equation

systems. Se
ond, we introdu
e spe
ial substru
tures of a meet-semilatti
e,

the so-
alled forks.

Lemma 3. Let m;n 2 N and F : f0; 1g

m+n

! f0; 1g. Then the system of

equations E

F

over the variables u

k

i

(0 � i � 2

minfm;ng

; 1 � k � m) and v

l

j

(0 � j � 2

minfm;ng

; 1 � l � n) has no solutions, where E

F

is de�ned as

E

F

= fF (u

1

i

; : : : ; u

m

i

; v

1

j

; : : : ; v

n

j

) = 1 j 0 � i; j � 2

minfm;ng

; i 6= jg

[ fF (u

1

i

; : : : ; u

m

i

; v

1

i

; : : : ; v

n

i

) = 0 j 1 � i � 2

minfm;ng

g:

Proof. Obviously, the system E

F

has solutions if and only if the system

fF

0

(u

1

i

; : : : ; u

n

i

; v

1

j

; : : : ; v

m

j

) = 1 j 0 � i; j � 2

minfm;ng

; i 6= jg

[ fF

0

(u

1

i

; : : : ; u

n

i

; v

1

i

; : : : ; v

m

i

) = 0 j 1 � i � 2

minfm;ng

g

9



over the variables u

l

i

and v

k

j

(0 � i; j � 2

minfm;ng

; 1 � l � n; 1 � k � m)

has solutions, where F

0

: f0; 1g

m+n

! f0; 1g is de�ned by swapping the

�rst m and the last n arguments to F , i. e., F

0

(b

1

; : : : ; b

n

; a

1

; : : : ; a

m

) =

F (a

1

; : : : ; a

m

; b

1

; : : : ; b

n

) for all a

1

; : : : ; a

m

; b

1

; : : : ; b

n

2 f0; 1g. Therefore, we


an without loss of generality assume that m = minfm;ng and pro
eed by

indu
tion on m.

� m = 0. Then 2

m

= 1 so E

F


ontains the equations F (v

1

1

; : : : ; v

n

1

) = 1

and F (v

1

1

; : : : ; v

n

1

) = 0, hen
e E

F


annot have solutions.

� m > 0. Towards a 
ontradi
tion assume that there exists a fun
tion

F : f0; 1g

m+n

! f0; 1g su
h that E

F

has solutions. Fix su
h a solution

and let a

m

i

2 f0; 1g be the value of u

m

i

(0 � i � 2

m

). Then obviously,

the system

fF (u

1

i

; : : : ; u

m�1

i

; a

m

i

; v

1

j

; : : : ; v

n

j

) = 1 j 0 � i; j � 2

m

; i 6= jg

[ fF (u

1

i

; : : : ; u

m�1

i

; a

m

i

; v

1

i

; : : : ; v

n

i

) = 0 j 1 � i � 2

m

g

(4)

also has solutions. Let I

0

; I

1

� f0; : : : ; 2

m

g su
h that I

0

= fi j a

m

i

= 0g

and I

1

= fi j a

m

i

= 1g. As jI

0

j+ jI

1

j = 2

m

+ 1, there is a 2 f0; 1g su
h

that jI

a

j � 2

m�1

+ 1; let I

0

a

� I

a

su
h that jI

0

a

j = 2

m�1

+ 1. Be
ause

the system (4) has solutions, the subsystem

fF (u

1

i

; : : : ; u

m�1

i

; a; v

1

j

; : : : ; v

n

j

) = 1 j i; j 2 I

0

a

; i 6= jg

[ fF (u

1

i

; : : : ; u

m�1

i

; a; v

1

i

; : : : ; v

n

i

) = 0 j i 2 I

0

a

; i 6= min I

0

a

g

(5)

also has solutions. Let � : f0; : : : ; 2

m�1

g ! I

0

a

be a bije
tion with

�(0) = min I

0

a

, and de�ne F

a

: f0; 1g

m+n�1

! f0; 1g by

F

a

(a

1

; : : : ; a

m�1

; b

1

; : : : ; b

n

) = F (a

1

; : : : ; a

m�1

; a; b

1

; : : : ; b

n

)

for all a

1

; : : : ; a

m�1

; b

1

; : : : ; b

n

2 f0; 1g. Thus, (5) 
an be written as

fF

a

(u

1

�(i)

; : : : ; u

m�1

�(i)

; v

1

�(j)

; : : : ; v

n

�(j)

) = 1 j 0 � i; j � 2

m�1

; i 6= jg

[ fF

a

(u

1

�(i)

; : : : ; u

m�1

�(i)

; v

1

�(i)

; : : : ; v

n

�(i)

) = 0 j 1 � i � 2

m�1

g:

(6)

We rea
h a 
ontradi
tion, as the system of equations E

F

a

, whi
h equals

(6) up to variable renaming, does not have solutions by indu
tion

hypothesis.

Forks. We say that Y � S is a fork i� there is x 2 Y su
h that for all

y; z 2 Y , y 6= z implies x = y ^ z; if Y is in�nite then we say that Y is a

fork of in�nite width, otherwise the size of Y is m 2 N and we say that Y is

a fork of width m � 1. Note that if S 
ontains a fork of in�nite width then

it also 
ontains forks of width m for every m 2 N.

10



0 1 2 3 4

Figure 2: Forks of width 0 to 4

Example 5. Some forks of �nite width are depi
ted in �gure 2. Note that

if S is a 
hain then it 
ontains only forks of width 1, and if S is the power

set meet-semilatti
e of an arbitrary set X then it 
ontains forks of in�nite

width i� X is in�nite. In parti
ular, the meet-semilatti
e of !-languages

over some alphabet � (see example 1) 
ontains forks of in�nite width i�

� is not unary. The same holds for the meet-semilatti
e of pre�x-
losed �-

languages over �. This is so be
ause if � is unary then the pre�x-
losed

�-languages form a 
hain. And if � 
ontains the distin
t letters a and b,

then Y = fa

�

g [ fa

�

[ a

i

b

�

j i 2 Ng is a fork of in�nite width.

In
ompleteness Lemma. Our proof of the in
ompleteness of sound and


ompositional 
ir
ular A-G rules works by 
ontradi
tion. Its main part

(Lemma 4) redu
es the existen
e of a sound and 
omplete 
ir
ular A-G

rule R whi
h is 
ompositional in the side 
ondition to the feasibility of a

boolean equation system, whi
h is known to be be infeasible by Lemma 3.

The resulting 
ontradi
tion implies that R must be unsound or in
omplete.

For the redu
tion to work, Lemma 4 has to assume that the meet-

semilatti
e S 
ontains forks of suÆ
ient width. However, this is not a re-

stri
tion as all interesting semilatti
es (in veri�
ation) in fa
t do 
ontain

forks of in�nite width, see example 5.

Lemma 4. Let R : �= if C[s

1

; s

2

; p

1

; : : : ; p

n

℄ be a 
ir
ular A-G rule. Let

r

1

; r

2

2 N, let F : f0; 1g

r

1

+r

2

! f0; 1g be a (r

1

+ r

2

)-ary boolean fun
tion

and let C

1

1

; : : : ; C

r

1

1

; C

1

2

; : : : ; C

r

2

2

: S

n+1

! f0; 1g be (n + 1)-ary fun
tions

su
h that

C[s

1

; s

2

; ~p℄ = F

�

C

1

1

[s

1

; ~p℄; : : : ; C

r

1

1

[s

1

; ~p℄; C

1

2

[s

2

; ~p℄; : : : ; C

r

2

2

[s

2

; ~p℄

�

(7)

where ~p stands for p

1

; : : : ; p

n

. If S 
ontains a fork of width 2

minfr

1

;r

2

g

then

R is unsound or in
omplete.

Proof. Let  be t

 

v t

 

0

and re
all that var(� [ f g) = fs

1

; s

2

; p

1

; : : : ; p

n

g.

Without loss of generality we may assume that there is some m 2 f0; : : : ; ng

su
h that for all j � 1, � j= t

 

v p

j

i� j � m; this 
an always be a
hieved

by renaming some property variables.

We will prove this lemma by 
ontradi
tion, so assume that R is sound

and 
omplete and let Y � S be a fork of width 2

minfr

1

;r

2

g

, i. e., Y =

11



fx

0

; x

1

; : : : ; x

2

r

g with r = minfr

1

; r

2

g su
h that for all i; j � 0 with i 6= j,

x

0

= x

i

^ x

j

. By Lemma 3, we know that the system of equations

fF (u

1

i

; : : : ; u

r

1

i

; v

1

j

; : : : ; v

r

2

j

) = 1 j 0 � i; j � 2

minfr

1

;r

2

g

; i 6= jg

[ fF (u

1

i

; : : : ; u

r

1

i

; v

1

i

; : : : ; v

r

2

i

) = 0 j 1 � i � 2

minfr

1

;r

2

g

g

(8)

over the variables u

k

i

and v

l

j

(0 � i; j � 2

minfr

1

;r

2

g

; 1 � k � r

1

; 1 � l � r

2

)

has no solutions. However, we will show that there is a solution to (8), namely

with C

k

1

(x

i

;

e

1;fx

0

) resp. C

l

2

(x

j

;

e

1;fx

0

) as the values of u

k

i

resp. v

l

j

, where

e

1

abbreviates the enumeration 1; : : : ; 1 of length m and fx

0

abbreviates the

enumeration x

0

; : : : ; x

0

of length n �m. To see that this is a solution, for

every i; j 2 f0; : : : ; 2

minfr

1

;r

2

g

g we 
hoose a valuation �

ij

su
h that �

ij

(s

1

) =

x

i

, �

ij

(s

2

) = x

j

, �

ij

(p

1

) = � � � = �

ij

(p

m

) = 1 and �

ij

(p

m+1

) = � � � =

�

ij

(p

n

) = x

0

.

First, let i; j 2 f0; : : : ; 2

minfr

1

;r

2

g

g with i 6= j. Be
ause of the 
hoi
e of

�

ij

, Proposition 2 yields that �

ij

j= �. As s

1

us

2

is a subterm of t

 

, we have

�

ij

(t

 

) � �

ij

(s

1

u s

2

) = x

i

^ x

j

= x

0

. And as x

0

� �

ij

(t) for every term t,

we have �

ij

(t

 

) � �

ij

(t

 

0

), i. e., �

ij

j=  . Hen
e, premises and 
on
lusion

of R are true under �

ij

. Due to 
ompleteness, the side 
ondition must be

true as well, so �

ij

j= C[s

1

; s

2

; ~p℄, i. e., C[s

1

; s

2

; ~p℄(�

ij

) = 1. With (7), the

de
omposition of the side 
ondition C[s

1

; s

2

; ~p℄, this yields the equation

F

�

C

1

1

(x

i

;

e

1;fx

0

); : : : ; C

r

1

1

(x

i

;

e

1;fx

0

); C

1

2

(x

j

;

e

1;fx

0

); : : : ; C

r

2

2

(x

j

;

e

1;fx

0

)

�

= 1:

Se
ond, let i 2 f1; : : : ; 2

minfr

1

;r

2

g

g. Again, Proposition 2 yields that �

ii

j= �.

For every p

j

2 var(t

 

), � j= t

 

v p

j

trivially, so �

ii

(p

j

) = 1. Therefore,

�

ii

(t

 

) = �

ii

(s

1

u s

2

) = x

i

^ x

i

= x

i

. On the other hand by Proposition 1,

there is some p

j

2 var(t

 

0

) su
h that � 6j= t

 

v p

j

, so �

ii

(p

j

) = x

0

, whi
h

implies �

ii

(t

 

0

) � x

0

. From the de�nition of forks, we know that x

0

� x

i

and x

0

6= x

i

, so x

i

6� x

0

. Therefore, �

ii

(t

 

) 6� �

ii

(t

 

0

), i. e., �

ii

6j=  . Hen
e,

the premises of R are true under �

ii

but the 
on
lusion is not. Due to

soundness, the side 
ondition must not be true, so �

ii

6j= C[s

1

; s

2

; ~p℄, i. e.,

C[s

1

; s

2

; ~p℄(�

ii

) = 0. Using (7) again, we get the equation

F

�

C

1

1

(x

i

;

e

1;fx

0

); : : : ; C

r

1

1

(x

i

;

e

1;fx

0

); C

1

2

(x

i

;

e

1;fx

0

); : : : ; C

r

2

2

(x

i

;

e

1;fx

0

)

�

= 0:

Thus, the system of equations (8) indeed has a solution, whi
h ends this

proof by 
ontradi
tion.

We have shown that an A-G rule whi
h is 
ompositional in the side 
ondition


annot be both sound and 
omplete | provided that the semilatti
e S


ontains forks of suÆ
ient width. The latter is the 
ase trivially whenever S


ontains a fork of in�nite width.

Theorem 5. If S 
ontains forks of in�nite width then there exists no sound

and 
omplete 
ompositional 
ir
ular assume-guarantee rule.

Proof. Follows from Lemma 4.

12



5 Dis
ussion of Related Work

In
ompleteness of Other Rules. Our setting of inferen
e rules in meet-

semilatti
es is a very abstra
t one. Most 
ir
ular A-G rules in the literature

are presented in more 
on
rete settings, i. e., they use more stru
ture than

just meet and order | and that extra stru
ture is usually indispensable for

proving soundness by a 
ir
ularity-breaking indu
tion. This raises the ques-

tion to what extent our in
ompleteness result is relevant for su
h 
on
rete

rules.

We 
laim that most 
ir
ular A-G rules 
an be transformed | preserv-

ing soundness and 
ompositionality | into equivalent 
ir
ular A-G rules

in meet-semilatti
es whi
h 
ontain forks of in�nite width. In
ompleteness

of the transformed rule then points out a defe
t of the original rule: There

must be 
ases in whi
h the original rule is not appli
able although soundness

is not in danger. Below, we will exemplify two su
h transformations.

Various 
ir
ular A-G rules have been proposed for settings, where sys-

tems and properties are presented as some form of transition graphs enri
hed

with input and output, e. g., Moore or Mealy ma
hines [13, 11℄ or Rea
-

tive Modules [4℄. These rules establish 
ertain re�nement relations, e. g.,

tra
e 
ontainment or simulation, between 
ompositions of transition graphs.

Thereby, 
omposition is a partial operation, whi
h is de�ned only if the


omponents satisfy some 
ondition 
alled 
ompatibility. These 
ompatibili-

ties form an impli
it side 
ondition to the A-G rules, whi
h is made expli
it

by the transformation. We demonstrate this in the following example by

means of the transformation of a 
ir
ular A-G rule for Moore ma
hines.

Example 6. Let X be a �nite set of variables, ranging over an arbitrary

non-empty domain D. A Moore ma
hine M is a (possibly in�nite) state

transition graph with input variables I

M

� X and output variablesO

M

� X ,

where the nodes resp. edges of the graph are labeled by valuations of the

output resp. input variables; for a formal de�nition see for instan
e [11, 13℄.

Naturally, one asso
iates a tra
e language JMK � �

�

withM , where � = D

X

is the set of valuations of all variables. The parallel 
omposition M

1

kM

2

of

two Moore ma
hines M

1

and M

2


orresponds to language interse
tion, i. e.,

JM

1

kM

2

K = JM

1

K \ JM

2

K. Note that M

1

kM

2

is de�ned if and only if M

1

and M

2

are 
ompatible, i. e., O

M

1

and O

M

2

are disjoint.

For Moore ma
hines with tra
e semanti
s, the following 
ir
ular proof

rule is known:

JP

2

k S

1

K � JP

1

K JP

1

k S

2

K � JP

2

K

JS

1

k S

2

K � JP

1

k P

2

K

(9)

where S

1

, S

2

, P

1

, P

2

are Moore ma
hines su
h that all parallel 
ompositions

in (9) are de�ned. We transform this rule into the A-G rule R

Moore

for the

meet-semilatti
e hP(�

�

);\;�

�

;�i, the power set of �

�

:

R

Moore

:

p

2

u s

1

v p

1

p

1

u s

2

v p

2

s

1

u s

2

v p

1

u p

2

if F

�

C[s

1

℄; C[p

1

℄; C[s

2

℄; C[p

2

℄

�

13



where D = P(X ) ℄ f?g is a �nite set and C : P(�

�

) ! D is a �nitary

abstra
tion mapping ea
h L 2 P(�

�

) to the least set of output variables

O

M

su
h that M is a Moore ma
hine with JMK = L; if no su
h Moore

ma
hine exists then C(L) = ?. The fun
tion F : D

4

! f0; 1g is de�ned by

F (O

s

1

; O

p

1

; O

s

2

; O

p

2

) = 1 i�

O

s

1

6= ? and O

p

1

6= ? and O

s

2

6= ? and O

p

2

6= ?

and O

s

1

\O

s

2

= O

p

1

\O

p

2

= O

p

2

\O

s

1

= O

p

1

\O

s

2

= ;:

R

Moore

is a 
ompositional 
ir
ular A-G rule a

ording to Se
tion 3. Cir
u-

larity and 
ompositionality in the premises are obvious. Compositionality in

the side 
ondition holds as obviously there exist fun
tions C

k

i

: P(�

�

)

3

! D

su
h that

F

�

C[s

1

℄; C[p

1

℄; C[s

2

℄; C[p

2

℄

�

= F

�

C

1

1

[s

1

; p

1

; p

2

℄; C

2

1

[s

1

; p

1

; p

2

℄; C

1

2

[s

2

; p

1

; p

2

℄; C

2

2

[s

2

; p

1

; p

2

℄

�

:

Moreover, soundness of R

Moore


an be redu
ed to soundness of the original

rule (9), and vi
e versa, so both rules are appli
able in exa
tly the same


ases. To see how soundness of R

Moore

redu
es to (9), 
onsider the premises

and side 
ondition of R

Moore

to be true under a valuation �. Then there are

Moore ma
hines S

i

and P

j

su
h that JS

i

K = �(s

i

) and JP

j

K = �(p

j

) and

S

1

and S

2

, P

1

and P

2

, P

2

and S

1

as well as P

1

and S

2

are 
ompatible, i. e.,

all parallel 
ompositions in (9) are de�ned. Furthermore, we have JP

2

K \

JS

1

K � JP

1

K and JP

1

K \ JS

2

K � JP

2

K, whi
h by language interse
tion and

soundness of (9) implies JS

1

k S

2

K � JP

1

k P

2

K, whi
h in turn by language

interse
tion implies that the 
on
lusion of R

Moore

is true under �. To show

the 
onverse redu
tion, let S

i

and P

j

be Moore ma
hines su
h that all parallel


ompositions in (9) are de�ned, i. e., S

1

and S

2

, P

1

and P

2

, P

2

and S

1

as

well as P

1

and S

2

are 
ompatible. Obviously, soundness of (9) follows by

language interse
tion and soundness of R

Moore

.

As the proof rule (9) has been proven sound in [13℄, R

Moore

is a sound

and 
ompositional 
ir
ular A-G rule. Thus by Theorem 5, R

Moore

is in
om-

plete be
ause the meet-semilatti
e hP(�

�

);\;�

�

;�i 
ontains forks of in�nite

width. Hen
e there are 
ases in whi
h 
ir
ular reasoning is admissible yet

the rule (9) is not appli
able, due to partiality of parallel 
omposition.

Other kinds of 
ir
ular A-G rules fo
us on temporal logi
s to present prop-

erties (and sometimes systems also), see for instan
e [1, 2, 12℄. In order to

break the 
ir
ularity, su
h rules usually employ so-
alled assume-guarantee

spe
i�
ations, i. e., formulas of the form ' .  where . is a spe
ial tempo-

ral operator ensuring that during any 
omputation the guarantee  holds

at least one step longer than the assumption '. In our meet-semilatti
e set-

ting, we 
annot express A-G spe
i�
ations in the premises of inferen
e rules.

14



However, we 
an move A-G spe
i�
ations to the side 
ondition, where their

truth is expressible as a relation. In the following example, we demonstrate

this transformation on a simple 
ir
ular rule for A-G spe
i�
ations.

Example 7. Let AP be a non-empty set of atomi
 propositions. We say that

� = P(AP) is the set of states, and �

!

is the set of 
omputations. A system

is a set of 
omputations, and the parallel 
omposition of two systems S

1

and

S

2

is their interse
tion S

1

\S

2

. Likewise, a property is a set of 
omputations,

and we say that a property P entails another property Q i� P � Q. We

may represent 
ertain properties by formulas in linear-time temporal logi


(LTL), whi
h are 
onstru
ted from atomi
 propositions by means of boolean

operators and the standard temporal operators X (next-time), U (until), F

(eventually) and G (always); for a formal de�nition of syntax and semanti
s

of LTL see for instan
e [7℄. Hen
eforth, we will identify a formula ' with

the property it represents.

Given two formulas ' and  , we de�ne the assume-guarantee spe
i�
ation

' B  as an abbreviation of the formula :(' U : ), 
f. [19℄. The temporal

operator B satis�es the following equalities and inequalities:

'B  =  ^

�

') X('B  )

�

(10)

G' ^ ('B  ) � G (11)

From the �x-point equation (10), we 
an read o� that 'B  is the weakest

property where  holds stri
tly longer than ' along every 
omputation.

For A-G spe
i�
ations, the following 
ir
ular proof rule is known:

S

1

� '

2

B '

1

S

2

� '

1

B '

2

S

1

\ S

2

� G('

1

^ '

2

)

(12)

where S

1

, S

2

are systems and '

1

, '

2

are LTL formulas. We transform this

rule into the A-G rule R

B

for the meet-semilatti
e of systems and properties

hP(�

!

);\;�

!

;�i:

R

B

:

p

4

u s

1

v p

3

p

3

u s

2

v p

4

s

1

u s

2

v p

3

u p

4

if C

1

1

[s

1

; p

1

; : : : ; p

4

℄ � C

1

2

[s

2

; p

1

; : : : ; p

4

℄

where � : f0; 1g

2

! f0; 1g denotes multipli
ation (i. e., 
onjun
tion in logi
al

terms) and the fun
tions C

k

i

: P(�

!

)

5

! f0; 1g are de�ned by

C

1

1

(S

1

; P

1

; P

2

; P

3

; P

4

) = 1 i� P

3

= GP

1

and P

4

= GP

2

and S

1

� P

2

B P

1

;

C

1

2

(S

2

; P

1

; P

2

; P

3

; P

4

) = 1 i� P

3

= GP

1

and P

4

= GP

2

and S

2

� P

1

B P

2

:

Note that the equality P

3

= GP

1

is supposed to hold i� there exists an

LTL formula '

1

su
h that '

1

and G'

1

represent the properties P

1

and P

3

,

respe
tively; P

4

= GP

2

is to be interpreted similarly.
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Obviously, R

B

is a 
ompositional 
ir
ular A-G rule

2

a

ording to Se
-

tion 3. Moreover, soundness of R

B


an be redu
ed to soundness of the

original rule (12), and vi
e versa, so both rules are appli
able in exa
tly

the same 
ases. To see how soundness of R

B

redu
es to (12), 
onsider the

premises and side 
ondition of R

B

to be true under a valuation �. Then

there are LTL formulas '

j

su
h that G'

1

= �(p

3

) and G'

2

= �(p

4

) and

�(s

1

) � '

2

B '

1

and �(s

2

) � '

1

B '

2

. Using soundness of (12), we infer

�(s

1

)\�(s

2

) � G('

1

^ '

2

), whi
h implies that the 
on
lusion of R

B

is true

under �. To show the 
onverse redu
tion, let S

i

and '

j

be systems and for-

mulas, respe
tively, su
h that the premises of rule (12) hold. By (11), these

premises imply G'

2

\ S

1

� G'

1

and G'

1

\ S

2

� G'

2

, respe
tively. Using

soundness of R

B

, we infer S

1

\ S

2

� G'

1

\ G'

2

, whi
h is equivalent to the


on
lusion of (12).

As the proof rule (12) is sound, 
f. [17, 19℄, R

B

is a sound and 
ompo-

sitional 
ir
ular A-G rule. Thus by Theorem 5, R

B

is in
omplete be
ause

the meet-semilatti
e hP(�

!

);\;�

!

;�i 
ontains forks of in�nite width. As

a 
onsequen
e, the rule (12) does not 
apture all sound 
ir
ular reasoning

patterns, i. e., there are 
ases in whi
h 
ir
ular reasoning is admissible yet

(12) is not appli
able.

In short, this paper shows that 
ompositionality implies in
ompleteness.

Yet, we did not en
ounter any 
omplete rule ex
ept for the rather trivial

rule R

2

from example 2. This raises the question whether non-trivial sound

and 
omplete 
ir
ular A-G rules do exist at all. They do | in [14℄, we

present a very general sound and 
omplete 
ir
ular A-G rule for 
ertain


lasses of latti
es. Of 
ourse, that rule must be non-
ompositional; in fa
t,

it is non-
ompositional both in the premises and in the side 
ondition. Still,

that general rule 
an be instantiated to many known 
ir
ular A-G rules, no

matter whether they are 
ompositional or not.

Other Notions of Completeness. When some 
omplex system should

be veri�ed against a 
onjun
tion of properties, one usually applies ba
kward

reasoning, i. e., one mat
hes the veri�
ation goal against the 
on
lusion of

a proof rule and from the premises and the side 
ondition one infers the

subgoals that need to be established. In [19℄, the authors investigate a no-

tion of 
ompleteness that 
hara
terizes rules whi
h always enable ba
kward

reasoning, so we will term this notion ba
kward 
ompleteness. Adopted to

our setting, a rule R : �= if � is 
alled ba
kward 
omplete i� for all val-

uations �, � j=  implies �

0

j= � and �

0

j= � for some valuation �

0

whi
h

agrees with � on the variables of  . Thus, truth of the 
on
lusion implies

that the premises and the side 
ondition 
an be made true through 
hoosing

(i. e., guessing) appropriate values for the auxiliary variables, i. e., for those

2

The trivial premises p

1

v > and p

2

v > have been omitted from the de�nition of R

B

for the sake of readability.

16



variables in the premises that do not o

ur in the 
on
lusion. Note that

ba
kward 
ompleteness does not distinguish premises and side 
ondition,

whereas this distin
tion is essential for our notion of 
ompleteness.

Our notion of 
ompleteness relates more to forward reasoning, i. e., from

prior knowledge whi
h subsystems guarantee whi
h properties assuming

whi
h other properties, we want to infer that the 
omplex system guar-

antees a 
onjun
tion of properties. A 
omplete rule (in the sense of this

paper) will enable this inferen
e whenever the 
on
lusion is 
onsistent with

our knowledge. Still, our in
ompleteness result bears some signi�
an
e for

ba
kward 
omplete rules. For a rule R : �= if � without auxiliary variables,

i. e., var( ) = var(�), ba
kward 
ompleteness implies 
ompleteness. Thus,

as a 
onsequen
e of Theorem 5, every sound and ba
kward 
omplete 
ompo-

sitional 
ir
ular A-G rule ne
essarily needs to employ auxiliary variables. In

other words, ba
kward reasoning with 
ompositional 
ir
ular rules is likely

to require guessing auxiliary assertions about the system. I. e., one trades

the lower 
omplexity of the (de
omposed) system for a higher 
omplexity of

the proof sear
h.

6 Con
lusion

We have shown that sound and 
ompositional 
ir
ular assume-guarantee

rules, presented as inferen
e rules restri
ted by an arbitrary side 
ondition,


annot be 
omplete. I. e., the side 
ondition of a 
ompositional rule, no

matter how elaborate it is, 
annot 
apture all 
ases where 
ir
ular reasoning

is admissible. Consequently, two important 
riteria for rating the quality of

inferen
e rules work against ea
h other in the realm of 
ir
ular reasoning.

Upon designing assume-guarantee rules, this raises the question whether we

should settle for 
ompositionality or rather for 
ompleteness. The answer

depends on the intended use of the rule.

Over the years, the pra
ti
ality of 
ir
ular assume-guarantee reasoning as

a te
hnique for 
ompositional veri�
ation has been do
umented in a number

of 
ase studies, see [9, 10, 16℄ to name a few. In most 
ases, these assume-

guarantee rules were tailored for model 
he
king, and as model 
he
kers

parti
ularly su�er from the infamous state explosion problem, the design-

ers of the rules fo
ussed on (automati
) system de
omposition rather than

on 
ompleteness. Consequently, these rules avoid to generate subgoals that

involve a 
omposition of subsystems. Here, 
ompositional rules whose side


onditions 
an be 
he
ked eÆ
iently (but are not too restri
tive) seem to be

very appropriate. There are tools that su

essfully employ su
h in
omplete


ompositional rules, e. g., in the veri�
ation of thread-parallel software [8℄.

To some extent, the loss of 
ompleteness 
an be mitigated against by hu-

man intera
tion, e. g., in the form of auxiliary annotations (to the 
ode of

the system), whi
h provide more information about the system so the tools

17



may �nd better de
ompositions.

To the best of our knowledge, there is no data available on the pra
ti
al

use of 
omplete 
ir
ular assume-guarantee rules in veri�
ation. However, in

the 
ase of manual (or almost manual) veri�
ation, we see no reason for

severely restri
ting the power of 
ir
ular reasoning, so one might prefer a


omplete rule over a 
ompositional one. Of 
ourse, then one must ta
kle

system de
omposition in the subgoals by other means, e. g., by abstra
tion.

Still, assume-guarantee reasoning may be superior to dire
t veri�
ation, as

the additional assumptions in the subgoals may enable better abstra
tions.
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