
Digit Classification using Biologically Plausible
Neuromorphic Vision

Patrick Maiera, James Raineyb, Elena Gheorghiuc, Kofi Appiahd, and Deepayan Bhowmikb

aDivision of Computing Science and Mathematics, University of Stirling, Stirling, UK
bSchool of Computing, Newcastle University, Newcastle upon Tyne, UK

cDivision of Psychology, University of Stirling, Stirling, UK
dDepartment of Computer Science, University of York, York, UK

ABSTRACT

Despite tremendous advancement in computer vision, especially with deep learning, understanding scenes in
the wild remains challenging. Even modern image classification models often misclassify when presented with
out-of-distribution inputs despite having been trained on tens of millions of images or more. Moreover, training
modern deep-learning classifiers requires a lot of energy due to the need to iterate many times over the training
set, constantly updating billions of model parameters. Owing to problems with generalisability and robustness
as well as efficiency, there is growing interest in computer vision to mimic biological vision (e.g., human vision) in
the hope that doing so will require fewer resources for training both in terms of energy and in terms of data sets
while increasing robustness and generalisability. This paper proposes a biologically plausible neuromorphic vision
system that is based on a spiking neural network and is evaluated on the classification of hand-written digits
from the MNIST dataset. The experimental outcome indicates improved robustness of the proposed approach
over state-of-the-art considering non-digit detection.

Keywords: Neuromorphic vision, digit classification, spiking neural network, human vision system.

1. INTRODUCTION

Prompt reactions to adversarial conditions are critical features for safe and reliable interaction with the envi-
ronment. Computer vision, which plays a significant role in such interaction processes, requires a higher level
of scene understanding with fast response capabilities. State-of-the-art deep learning-based approaches are not
adaptive to unseen changes in the environment, computationally intensive and prone to fail in complex scenar-
ios. This paper proposes a biologically plausible neuromorphic computational vision approach that mimics the
computational neuroscience of human vision and examines its application in a prototypical digit classification
problem.

Computational neuroscience has produced decades of insights into the principles and structure of neural
networks that realise vision in animals, including humans. Biological neural networks are massively parallel
analogue computers that communicate by transmitting electrical spikes, hence they are termed spiking neural
networks (SNNs). A characteristic property of SNNs is that their energy consumption is directly related to
spiking frequency, and that the energy consumption of neurons that are not spiking is very low. This explains
the comparatively low energy consumption of the human brain, despite having billions of neurons and trillions
of synapses.

In this paper, we investigate and extend a previously studied SNN by Diehl and Cook1 designed for classifying
hand-written digits from the MNIST dataset. This SNN consists of a simple two-layer architecture of excitatory

Further author information: (Send correspondence to Deepayan Bhowmik)
Patrick Maier: E-mail: patrick.maier@stir.ac.uk
James Rainey: E-mail: James.Rainey@newcastle.ac.uk
Elena Gheorghiu: E-mail: elena.gheorghiu@stir.ac.uk
Kofi Appiah: E-mail: kofi.appiah@york.ac.uk
Deepayan Bhowmik: E-mail: deepayan.bhowmik@newcastle.ac.uk



and inhibitory neurons and implements a biologically plausible unsupervised competitive learning approach,
similar to self-organising maps, that learns representations of digits by adapting the input weights of excitatory
neurons using biologically plausible learning rules.

While the learning algorithm of Diehl and Cook is biologically plausible, the learned representations, maps
of unoriented pixel intensities, are poor. It is well known that neurons in the visual cortex respond not just
to the intensity of light but to simple visual features such as oriented edges and bars. Hence, we propose an
improvement on the state-of-the-art by coupling the SNN by Diehl and Cook with convolutional filters that are
selective to orientation. We investigate how using such filters affects the training behaviour of the network as
well as its robustness when confronted with unclassifiable inputs.

Our contributions are as follows:

• A comparison of the effectiveness of pixel-based vs. convolution-based representations of digits in the
context of unsupervised competitive learning. We find that, while pixel-based representations tend to
reach the final accuracy more rapidly, convolution-based representations improve more steadily over time,
avoiding big fluctuations in accuracy as the network trains.

• An investigation of the robustness of pixel-based vs convolution-based representations. We find that pixel-
based representations are not robust when exposed to unclassifiable inputs, misclassifying almost all such
inputs as digits. By contrast, convolution-based representations, when trained long enough, misclassify less
than 10% of such inputs as digits.

• A novel and biologically plausible means of improving robustness for competitive SNNs by deliberately
untraining (i.e. resetting to a random initial state) a subset of the neuron population post training. In
competitive SNNs, these untrained neurons act as representations of unclassifiable inputs. Untraining 10%
of the population lowers the rate of misclassified error inputs to between 3% and 5%, for both pixel-based
and convolution-based representations. Thanks to a careful selection of the sub-population, untraining has
virtually no impact on the digit classification accuracy of the network.

2. RELATED WORK

2.1 Biological Vision

2.1.1 Object and shape processing

Psychophysical and neurophysiological studies have shown that object processing occurs across multiple stages
in the visual cortex, with different visual areas processing a wide variety of visual features. The visual analysis of
objects begins with the detection of the orientations and positions of local parts of contours. This is accomplished
by orientation-selective V1 neurons2–4 which respond selectively to local/specific features (e.g. oriented edges and
bars) of complex stimuli. The outputs of a small subset of these V1 neurons are then combined to form parts-
of-shapes (curves, angles)5 that are encoded by neurons in intermediate visual areas V26–8 and V4.9–13 These
parts-of-shapes are further combined to form whole-shapes which are encoded by neurons in higher visual areas
IT and LOC14–18 that are selective to global simple shapes (e.g., circle, square, etc.).

2.1.2 Texture processing

Computational models of texture processing often refer to different processes: texture detection, discrimination
and segmentation. It is well established that texture-modulation detection is mediated by relatively low-to-
intermediate level processes that detect variations in contrast energy within narrow-band spatial-frequency and
orientation-selective channels, as modelled by the Filter-Rectify-Filter cascade,19–22 which indiscriminately sum-
mate signals across different features/channels.

A standard model of texture processing is the filter-rectify-filter (FRF) model,23 also known as non-Fourier,
back-pocket or complex channel model. The model consists of two stages. The first stage computes a generic
image representation that resembles spatial processing characteristics such as spatial frequency and orientation
tuning of neurons in early visual areas. The input image is represented at a range of different spatial resolutions
or scales (this involves low-pass filtering/blurring the image and subsampling), with each resolution level being



decomposed into a set of four small orientation-selective components/filters. Thus, the first-stage filters are
linear and narrow-band and convolve the input image at several spatial scales and orientations. The outputs
of the first-stage filters are then subjected to a non-linearity, such as full-wave rectification or squaring, which
involves summing of the half-wave rectified responses of pairs of filters. The purpose of this non-linearity is
to make all excursions from the mean level positive such that first-stage filter responses do not cancel each
other out when linearly pooled at the second stage. The second stage of the model involves the computation of
more specific properties which are done by second-stage filters that have larger receptive fields than their first-
stage counterparts, but are otherwise close analogues. The second-stage filters sum the non-linearly transformed
first-stage outputs.

Different FRF models differ mainly in the form of their intermediate non-linearity (e.g., full-wave rectification,
half-wave rectification, squaring, etc.) and in the manner in which the outputs of the second-stage filters are
combined prior to the decision stage. The choice of different types of non-linearities is mainly related to the task
(e.g., texture modulation detection, texture segmentation). For example, second-stage filters with orthogonally
tuned first-stage inputs are subtracted to produce an orientation-opponent signal, resulting in a representation
at the second stage of normalised opponent measures.24

Our digit-classification application uses four orientation-selective filters in stage 1 followed by a set of fully-
connected neurons. Outputs of stage 1 are combined before they feed into stage 2, consisting of a set of neurons
representing ten digit classes (0-9).

2.2 Digit classification using SNNs

Classification of handwritten digits has been a benchmark problem in machine learning and neural network for
decades.25 Traditionally, artificial neural networks (ANNs) have been employed to achieve high accuracy in
digit recognition tasks, but more recently, a more powerful alternative known as spiking neural networks (SNNs)
have emerged. SNNs, which are inspired by the biological neurons’ spiking behaviour and attempt to emulate
the remarkable energy efficiency of the brain in processing information.26 Unlike ANNs, which use continuous
activation function, SNNs use spikes or discrete events to transmit information.27

Several neuron models are used in SNNs, with the most prominent being the Leaky Integrate-and-Fire (LIF)
model, the Hodgkin-Huxley model and Izhikevich model.28 The LIF model is particularly popular in digit
classification tasks due to its simplicity and efficiency in simulating neuron behaviour. Directly training SNNs
is more challenging due to the non-differentiable nature of spike events. However, several methods have been
proposed to overcome this. Spike-Timing-Dependent Plasticity (STDP) is a biologically inspired learning rule
that adjusts synaptic weights based on the timing of spikes.29 One of the prevalent approaches in employing SNNs
for digit classification is converting pre-trained ANNs into SNNs. This method involves training a traditional
ANN and then mapping its weights and structure to an SNN.

Vision datasets have been used to compare SNNs and recurrent neural networks (RNNs). A series of ex-
periments were conducted on two types of neuromorphic datasets (N-MNIST and DVS-Gesture) to conclude
that SNNs generally achieve better accuracy than RNNs, even though accuracy of RNNs increases with rate-
coding-inspired loss functions.30 Li and Meng (2023)31 presented a deep spiking neural network with improved
back-propagation, and the experiments conducted achieved recognition accuracies of 98.43%, 96.70%, 98.81%
and 93.61% respectively on the image classification datasets MNIST, Fashion-MNIST, Kuzushiji-MNIST and
CIFAR-10.

SNNs represent a promising frontier in the classification of handwritten digits, offering advantages in terms
of biological plausibility, energy efficiency, and potentially faster processing times.27 While challenges remain,
particularly in the areas of training complexity and hardware implementation, ongoing research is paving the
way for SNNs to become a viable alternative to traditional ANNs in various applications.

3. METHODOLOGY

We investigate the behaviour of the MNIST digit-classifying SNN of Diehl and Cook (2015)1 by evaluating its
learning speed, accuracy and ability to detect erroneous inputs. We will contrast their original network with our
proposed variant by modifying the retina layer to a primary visual cortex area V1 layer which consists of neurons



input image

(28x28 pixel)

Prewitt filters

(rectified)

input neurons

excitatory synapses

(trainable weights)

100 output neurons

(trainable firing thresholds)

output spike histogram

lateral inhibitory synapses

...

...

spike trains

Figure 1. Proposed network architecture, extending the architecture of Diehl and Cook (2015)1 by a filter layer.

sensitive to oriented features. In addition, we will contrast fully trained networks with networks that deliberately
“untrain” a subset of neurons and use untrained neurons for detecting erroneous (i.e. non-digit) input images.

3.1 Background: Unsupervised learning of digits using SNN

This section reviews the SNN architecture and training method proposed by Diehl and Cook (2015)1 and imple-
mented in the Brian 2 SNN simulator.32

Figure 1 depicts the structure of our proposed network, largely following the architecture of Diehl and Cook
(2015)1 except for the addition of a filter layer before the input neurons. Our network applies edge-detecting
filters (see Section 3.2) to the 28x28-pixel input image. A layer of input neurons converts the filter outputs into
spike trains. The input layer is fully connected via excitatory synapses to a layer of 100 output neurons. The
synaptic weights are initialised at random and adjusted during training to learn specific input patterns. Each of
the output neurons is also connected to all other output neurons by inhibitory synapses. Thus, the firing of an
output neuron will, after a short delay, laterally inhibit the firing of other output neurons. This structure creates
a competition between output neurons. Those neurons responding strongest to a given input will fire fastest and
therefore drive their inhibitory synapses to suppress the firing of output neurons that responded less strongly to
the input. We refer the reader to Diehl and Cook (2015)1 for details on the dynamics of neurons and synapses.



Figure 2. 100 neurons trained for 1000 images (left) and 3000 images (right).

Training the network proceeds in two phases. During a first, unsupervised training run, the weights of the
excitatory synapses and the firing thresholds of the output neurons are adjusted using an STDP-based learning
rule. Then, synaptic weights and firing thresholds are fixed and a second, supervised training run learns a
probabilistic digit classification for each output neuron. Finally, prediction is based on mixing the probabilistic
classifications, weighted by the output spike histogram for the given input.

Diehl and Cook (2015) argue that their network is based on biologically plausible principles, including the
use of unsupervised STDP for learning synaptic weights and firing thresholds and the use of lateral inhibition
to reduce the number of output spikes.1 The latter is very effective; a trained network will see only a small
fraction (typically between 2 and 4) of the output neurons spike on an given input. This sparsification of high-
dimensional sensory inputs is a main factor for the the superior energy-efficiency of visual signal processing in
biological systems.

3.1.1 Training phase 1: Unsupervised clustering of input patterns

The first training phase exposes the network to images from the MNIST training dataset without considering
their labels. Each image is exposed for 350 milliseconds (in simulation time), then the inputs are darkened for
150 milliseconds to quieten the network, before the cycle repeats with the next training image.

Exposing the input image will cause some of the output neurons to spike (which will drive their inhibitory
synapses to subsequently suppress the firing of other output neurons). An STDP-based learning rule is used to
adjust the excitatory synaptic weights of only those output neurons that did spike, and they are adjusted to
become a little more similar to the current input, thus strengthening the spiking neurons’ future responses to
similar inputs. Over time, each neuron’s excitatory synaptic weights will come to resemble a handwritten digit,
and will act as centroid of the cluster of digits to which the neuron responds.

To illustrate, Figure 2 shows heat maps of the excitatory synaptic weights of all 100 output neurons after
having being trained on 1000 and 3000 MNIST images, respectively. After 1000 training samples, the synaptic
weights of just over half of the neurons have been adjusted to resemble handwritten digits (some more accurately
than others) whereas the synaptic weights of the other half remain untrained because those neurons have spiked
rarely or never. After 3000 training samples, synaptic weights of all 100 neurons have been trained, and they all
resemble handwritten digits (though some appear ambiguous and could represent multiple digits, e.g. 4s as well
as 9s).

Besides excitatory synaptic weights, STDP is also used to adjust the firing thresholds of output neurons,
raising the thresholds of neurons that spike often, thereby reducing their firing rate. This is also biologically
motivated, and ultimately makes firing rates across the neuron population more uniform.



Figure 3. Probability distributions of two neurons (A and B) derived from spike count histograms. The (hypothetical)
third distribution is a mix of A and B.

3.1.2 Training phase 2: Supervised labelling of output neurons

After training phase 1, synaptic weights and firing thresholds are fixed. In order to assign meaning to the learned
input patterns, the training dataset is exposed to the network again, image by image, for the same durations as
before, while gathering spike count histograms, indexed by the training images’ labels (the classes 0 to 9), for
each output neuron. After completing the training run, each neuron’s spike count histogram defines a discrete
probability distribution over the classes 0 to 9. We call the probability of the mode of each neuron’s distribution
the neuron’s confidence. The higher the confidence, the more selective the neuron, that is, the more likely it
responds to a single digit only.

Figure 3 shows examples of two such probability distributions. Neuron A recognises digit 1 with very high
confidence of 0.98. On the other hand, neuron B recognises digit 9 with very low confidence, as the probability
of class 9 is barely higher than that of class 4, causing neuron B to mix up 4s and 9s often.

3.1.3 Prediction: Classification of digits

The procedure for classifying unseen inputs is similar to the supervised training step. The fixed-weights network
is exposed to the input image for 350 milliseconds, followed by 150 milliseconds of darkness. Spike counts are
recorded for all 100 output neurons. The output probability distribution is computed as the spike-count-weighted
mixture the neuron distributions that were calculated during the supervised training phase. The predicted class
is the mode of the output distribution and the confidence of the prediction is the probability of the mode.

To illustrate this with a hypothetical example, suppose that neurons A and B in Figure 3 spike once and
twice, respectively, on a given hypothetical input, and no other neuron spikes. The output distribution is the
mix 1*A+2*B shown in Figure 3, with mode class 1 and confidence 0.35. That is, the network classifies the
input as a digit 1 based on the high confidence of neuron A despite the low-confidence neuron B having reacted
more strongly to the input.

As an aside, Diehl and Cook (2015) opted for a simpler majority-vote classifier. After the supervised training
phase, they label each neuron with the mode of its probability distribution. When classifying, they count the
spikes per class, and the class with most spikes wins.1 The downside of this method is that it is more difficult
to define a meaningful measure of prediction confidence. Moreover, low confidence neurons are more likely to



Table 1. Four network variants, representing pixels or vertical/horizontal edges.

Convolutions Operators Kernel size Stride Represented features

28x28 identity 1x1 1 28x28 pixels; the network of Diehl and Cook (2015)

14x14 smoothing 2x2 2 14x14 smoothed pixels

28x28x2 Prewitt 3x3 1 28x28x4 rectified vertical and horizontal edges

14x14x2 Prewitt 3x3 2 14x14x4 rectified vertical and horizontal edges

cause mispredictions. For instance, the majority-vote classifier would have predicted class 9 instead of 1 for the
hypothetical scenario depicted in Figure 3.

3.2 Sensitivity to oriented features

The input layer of the network by Diehl and Cook (2015) is sensitive to 28x28 pixel intensities.1 To examine
whether an orientation-sensitive input layer improves the performance of the network, we apply convolutional
filters to the input image, so that the resulting network learns representations of horizontally or vertically oriented
features rather than pixel intensities. As there are multiple orientations to consider, learning oriented features
increases the number of input neurons and synaptic weights and thus the computational resources required by
the network. For a fair comparison in terms of computational resources, we also investigate variants of the
network that reduce the image resolution such that the resulting network requires the same number of input
neurons and synaptic weights for learning oriented features as the original network by Diehl and Cook (2015).

Table 1 lists the four network variants that will be investigated in Section 4. Each variant is obtained from
the original network of Diehl and Cook (2015)1 by applying different convolutional filters to the 28x28-pixel
input image.

• The first network (row 1) applies 28x28 identity filters (i.e. it does not apply any filters at all) resulting in
the original network of Diehl and Cook (2015) that learns pixel intensities.

• The second network (row 2) applies the following 2x2 smoothing kernel[
1/4 1/4
1/4 1/4

]
with a stride of 2 pixels, effectively reducing the image resolution to 14x14 pixels (with intensity ranging
from 0 to 255). Compared to Diehl and Cook (2015), this network requires only a quarter of the input
neurons and synaptic weights.

• The third network (row 3) applies (normalised) Prewitt operators33 for detecting vertical and horizontal
edges. The operators are represented by the following 3x3 kernels 1/3 0 −1/3

1/3 0 −1/3
1/3 0 −1/3

  1/3 1/3 1/3
0 0 0

−1/3 −1/3 −1/3


The Prewitt filter outputs range from -255 to 255, yet the input neuron expect non-negative values. Hence,
we duplicate the number of filters by including the inverses of the above Prewitt kernels, and rectify filter
outputs with a ramp function (see Figure 4 for an example of applying the edge detecting filters to an
image of the digit 6). Thus, the filters yield 28x28x4 edge features (ranging from 0 to 255), requiring four
times as many input neurons and synaptic weights as the network of Diehl and Cook (2015).

• The final network (row 4) applies the same edge-detecting rectified Prewitt operators with a stride of 2
pixels, resulting in a lower resolution of 14x14x4 edge features. Consequently, this network requires the
same amount of input neurons and synaptic weights as the original network of Diehl and Cook (2015).



Figure 4. Left: image of digit 6. Right: Prewitt kernels applied to the image; vertical/horizontal (top row) and their
inverses (bottom row).

Section 4 investigates how the different filters affect training speed of the network as well as the accuracy of
the fully trained network (both for classifying digits and discriminating digits from non-digits). Note that the
cost of the convolutional filters is negligible, as the kernels are simple (3 additions, 3 subtractions and 1 division
for a Prewitt kernel) and the filters are computed only once per input image. In fact, the computational cost of
these SNNs is roughly proportional to the number of input neurons, as more input neurons tend to generate a
higher total number of spikes.

3.3 Detecting erroneous inputs

An important property of robust classifiers is their ability to detect when classification is impossible because the
input is too far outside the distribution of training samples. Experiments with applying the classifiers to random
images from the CIFAR-100 dataset demonstrate that the original network by Diehl and Cook (2015) is not a
robust classifier, misclassifying almost all CIFAR-100 images as digits (see Section 4.3).

There are two ways in which an SNN-based classifier can be made more robust.

1. By not responding to erroneous inputs. That is, no neuron should spike on inputs that are not handwritten
digits. Section 4.3 shows that sensitivity to oriented features improves robustness by suppressing most
responses to erroneous inputs.

2. By introducing an additional class for recognising error inputs. That is, dedicated neurons responsible for
detecting erroneous inputs should spike.

Here, we outline how to realise the latter approach by dedicating a subset of neurons to detecting errors.
Importantly, this group of neurons is not trained on samples of error images, as we assume that there are no
representative samples of erroneous inputs — by definition, erroneous inputs are those that fall far outside the
distribution of training samples.

The idea is to use “untrained” neurons to detect erroneous inputs. The synaptic weights of untrained neurons
are random, and therefore these neurons will respond to random input patterns. On regular MNIST inputs, the
firing of these untrained neurons will be suppressed by the stronger responses of trained neurons. However, on
error inputs the response of some untrained neurons is likely stronger than the responses of trained neurons. In
that case, the spiking untrained neurons will suppress the firing of trained neurons via lateral inhibition, thereby
preventing misclassification of the input as a digit.

Technically, we achieve the effect of including untrained neurons in the population by resetting a subset (10
out of 100) of output neurons. Resetting a neuron means resetting its synaptic weights to its initial random
values, and resetting the firing threshold to the median of the population. The effect of “untraining” 10 neurons
by resetting their synaptic weights is visualised in Figure 5.

Resetting the firing threshold to the population median will make the reset neuron roughly as sensitive as
trained neurons. That is, the firing threshold is neither so high that the reset neuron never spikes, nor so low that



Figure 5. 100 neurons trained on 6000 digits, then 10 neurons have their synaptic weights reset to random values.

it spikes all the time. Resetting a neuron’s synaptic weights to random values will make the neuron unlikely to
respond strongly to any image in the training set. However, some reset neurons may respond more strongly than
trained neurons to images that are not part of the training set; if the response is strong enough to trigger the
reset neuron to spike, lateral inhibition will prevent trained neurons spiking, thereby preventing misclassification.

Which 10 neurons should be reset? It makes sense to reset neurons that are unlikely to contribute much to
the accuracy of digit classification. We use the confidence of each neuron’s probability distribution (determined
after training phase 2, see Section 3.1.2) as a proxy for the quality of that neuron’s contribution to classification.
Therefore, we rank all 100 neurons by their confidence and reset the 10 neurons with lowest confidence values.
Section 4 investigates how resetting those 10 neurons affects the accuracy of classifying digits and discriminating
digits from non-digits.

4. RESULTS AND DISCUSSION

In this section, we evaluate 4 different networks of 100 output neurons. Two of the networks are sensitive to
pixel intensities, the original one by Diehl and Cook (2015) with a resolution of 28x28 pixels, and a variant with
reduced resolution of 14x14 pixels. The other two networks are sensitive to horizontal and vertical edges, one
with a resolution of 28x28x2 Prewitt filters, and one with a reduced resolution of 14x14x2 Prewitt filters. Due to
the representation of Prewitt filters (Section 3.2), the networks based on Prewitt filters use four times as many
computational resources as the corresponding pixel-based networks of the same image resolution.

We find that all four networks eventually converge to same digit classification accuracy of between 82 and
83%, which is the same accuracy that was reported by Diehl and Cook (2015) for a network of 100 output
neurons.1 Our experiments are concerned with how the networks differ in terms of learning speed and in terms
of robustness.



Figure 6. 10-fold cross validation of digit classification accuracy of 4 networks as training progresses. The left column
shows pixel-based SNNs, the right column SNNs based on oriented features. The top row shows high-resolution SNNs;
the bottom row shows low-resolution SNNs.

4.1 Speed of training convergence

We first investigate how fast these networks learn, that is how accuracy depends on the number of training images
seen. We trained each network for 2 epochs on 6000 images∗ of the MNIST training set. Every 200 training
images, the network was frozen and run to classify all 10000 MNIST test images. The process was repeated 10
times with 10 different sets of 6000 MNIST training images.

Figure 6 reports the minimum, mean and maximum classification accuracy (i.e. the fraction of test images
classified correctly) over time for each of the four networks. The data shows that all networks approach peak
accuracy before the end of the first epoch. However, both the speed of convergence and the variability of accuracy
vary between networks.

• The high resolution pixel-based network approaches peak accuracy earliest, after training on about a third
of the images. The other networks approach peak accuracy only after training on about 80 to 100% of the
images. Three of the networks show a marked jump in accuracy when approaching the peak. This jump
coincides with the point where all neurons have had their synaptic weights sufficiently trained to resemble
some images from the training set.

• The pixel-based networks show very high variability in accuracy prior to converging to peak accuracy.
By contrast, the networks sensitive to oriented features show much less varibility as training progresses.
Thus, only networks based on oriented features offer a predictable trade-off between traininig set size and
accuracy.

4.2 Impact of resetting neurons on accuracy and confidence of classifying MNIST digits

In order to dedicate some of the neuron population to detecting erroneous inputs that are not digits, we “untrain”
10 of 100 neurons by resetting their synaptic weights to their initial random state. To limit the impact on

∗In the interest of faster training, we increased the STDP learning rates of all networks by a factor of 10 compared to
Diehl and Cook (2015).1



Table 2. Accuracy of classifying MNIST digits.

SNN Accuracy Confidence
Q1 Q2 Q3

28x28 0.867 0.60 0.80 0.89
28x28 (reset) 0.865 0.63 0.79 0.86

28x28x2 0.834 0.56 0.75 0.85
28x28x2 (reset) 0.835 0.57 0.75 0.85

14x14 0.848 0.54 0.75 0.89
14x14 (reset) 0.860 0.56 0.75 0.86

14x14x2 0.853 0.55 0.76 0.89
14x14x2 (reset) 0.840 0.57 0.74 0.89

classification accuracy, we pick the 10 neurons with least confidence. In this section, we evaluate the impact of
resetting those 10 neurons on the accuracy and the confidence of digit classifcation.

We train each of the four networks on the same set of 6000 images from the MNIST training set, for 2 epochs.
To benchmark accuracy, we classify 1000 images from the MNIST test set, and we repeat the experiment after
resetting the 10 least confident neurons. Both the training set and the testing set are balanced, that is, each
class makes up exactly 1/10th of the training and the testing set.

Table 2 reports the overall accuracy (the fraction of correctly classified digits) as well as the distribution of
confidence levels of the classification (first, second and third quantile of confidence levels). We find that resetting
the 10 least confident neurons has very little impact on overall accuracy. For each network, overall accuracy
stays within about 1 percentage point either way.

Resetting the 10 least confident neurons may have a small impact on the confidence levels of the classification.
More precisely, while there is little change in the median and the upper quartile of the confidence levels, the
lower quartile of the confidence levels is raised slightly for all networks. This implies that confidence levels at the
lower end are influenced by the low-confidence neurons, and that resetting those low-confidence neurons removes
some negative influence on the confidence of classifications.

Figure 7 shows confusion matrices for the high-resolution networks, without (top row) and with (bottom row)
resetting neurons, demonstrating that resetting the 10 least confident neurons barely alters the classification. In
particular, all confusion matrices add to 1000, i.e. all 1000 input images were classified as digits.

These confusion matrices highlight some of the reasons for the limited digit classification accuracy of the
networks, showing that 4s and 9s are often mixed up and 2s are often misclassified as 8s. The matrices also
reveal differences between the pixel-based and the Prewitt-filter-based SNN: the latter is better at recognising
4s but worse at recognising 0s, 3s and 9s.

4.3 Detecting non-digits

Next, we compare how the four networks react when presented with non-digits. That is, we ’classify’ 1000
randomly selected images from the CIFAR-100 dataset.† To measure accuracy, we report the fraction of CIFAR-
100 images that are correctly not classified. We repeat the experiment after resetting the 10 least confident
neurons and interpret the reset neurons as detectors of the non-digit class. To measure accuracy in the second
set of experiments, we count the number of CIFAR-100 images that are correctly not classifed and the number
of CIFAR-100 images that are classified as non-digits. Table 3 reports the overall accuracy, and the breakdown
into the fraction of unclassifed images (no neuron spiked) and images classifed as non-digits.

We find that the pixel-based networks are unable to detect non-digits, misclassifying almost all CIFAR-100
images as digits. An analysis of the confusion matrix shows that they misclassify about two thirds of the images

†The CIFAR-100 images are 32x32 pixel RGB images. In order to fit the dimensions of the MNIST dataset, we convert
the CIFAR-100 images to grayscale and crop the central 28x28 pixels.



A
ct
u
a
l
d
ig
it

28x28 pixels
Predicted digit

0 1 2 3 4 5 6 7 8 9

0 98 1 0 0 0 0 1 0 0 0

1 0 99 0 0 0 0 1 0 0 0

2 8 0 75 3 0 0 1 1 12 0

3 0 0 1 91 0 3 0 1 3 1

4 1 4 2 1 76 0 2 2 0 12

5 7 0 0 3 1 83 2 0 3 1

6 7 1 0 0 0 0 92 0 0 0

7 2 1 0 0 0 0 0 90 0 7

8 0 1 2 3 0 3 2 0 89 0

9 2 0 0 1 16 1 0 5 0 75

A
ct
u
a
l
d
ig
it

28x28x2 Prewitt filters
Predicted digit

0 1 2 3 4 5 6 7 8 9

0 89 1 3 0 0 3 4 0 0 0

1 0 100 0 0 0 0 0 0 0 0

2 6 3 72 1 0 2 1 1 14 0

3 1 1 7 77 0 5 0 0 7 2

4 0 4 2 0 87 1 0 0 0 6

5 4 3 0 2 1 78 4 0 7 1

6 6 1 0 0 0 1 92 0 0 0

7 0 1 0 0 3 0 0 92 0 4

8 0 4 1 5 1 3 0 0 84 2

9 0 0 0 0 29 1 0 7 0 63

A
ct
u
a
l
d
ig
it

28x28 pixels (10 neurons reset)
Predicted digit

0 1 2 3 4 5 6 7 8 9

0 98 1 0 0 0 0 1 0 0 0

1 1 98 0 0 1 0 0 0 0 0

2 10 1 73 1 0 0 1 1 13 0

3 1 0 5 85 0 2 0 0 6 1

4 1 2 2 0 79 0 2 1 2 11

5 8 0 0 2 1 84 2 0 2 1

6 5 0 0 1 0 0 94 0 0 0

7 1 1 0 0 0 0 1 89 1 7

8 0 2 2 4 0 5 0 0 87 0

9 0 0 1 0 19 2 0 2 1 75

A
ct
u
a
l
d
ig
it

28x28x2 Prewitt filters (10 neurons reset)
Predicted digit

0 1 2 3 4 5 6 7 8 9

0 88 1 3 0 0 4 4 0 0 0

1 0 100 0 0 0 0 0 0 0 0

2 6 5 72 1 0 2 0 1 13 0

3 1 0 5 81 0 3 0 0 8 2

4 0 2 4 0 88 1 0 1 0 4

5 4 2 0 2 1 72 5 1 9 4

6 6 1 0 0 0 2 91 0 0 0

7 0 1 0 0 3 0 0 91 0 5

8 0 4 1 3 1 2 0 0 88 1

9 0 0 0 0 27 1 0 8 0 64

Figure 7. Confusion matrices. Left column: 28x28 pixels. Right column: 28x28x2 Prewitt filters. Top row: without
resetting neurons. Bottom row: resetting the 10 least confident neurons.

Table 3. Digit/non-digit classification accuracy of 4 networks, with and without resetting the 10 least confident neurons.

SNN Accuracy
Overall No spike Non-digit

28x28 0.003 0.003
28x28 (reset) 0.969 0.001 0.968

28x28x2 0.927 0.927
28x28x2 (reset) 0.961 0.805 0.156

14x14 0.001 0.001
14x14 (reset) 0.972 0.000 0.972

14x14x2 0.915 0.915
14x14x2 (reset) 0.960 0.714 0.246



as digit 0. By contrast, the Prewitt-filter-based networks do not spike for about 92% of the CIFAR-100 images,
making them reliable detectors of non-digits. We note that when the networks are trained for only 1 epoch, the
error detection accuracy of the Prewitt-filter-based networks deteriorates to between 40 and 60%. Thus, error
detection accuracy benefits more from longer training than digit classification accuracy.

Resetting the 10 least confident neurons dramatically improves the non-digit detection for pixel-based net-
works, resulting in a non-digit detection accuracy of about 97%. Resetting neurons also marginally improves
non-digit detection for Prewitt-filter-based networks, raising the overall non-digit detection accuracy from 92%
to about 96%.

We also note that discriminating between digits and non-digits based on prediction confidence thresholds
will not yield a reliable error dectector for the pixel-based SNNs. For example, for the 28x28 pixel network the
75th percentile of the prediction confidence when classifying 1000 non-digits is 0.59. Thus, using a confidence of
0.59 or lower as the threshold for detecting non-digits would result in misclassifying 25% of non-digits as digits.
And yet, the same threshold would also result in approximately 25% of digits being misclassified as non-digits
since the 25th percentile of the prediction confidence when classifying 1000 digits is 0.60 (Table 2). This shows
that there is significant overlap between the distributions of confidence levels for digits and non-digits, and no
threshold will be able to separate the distributions without large errors.

5. CONCLUSIONS

The aim of this work was to investigate biologically plausible ways to improve the training speed, classification
accuracy and robustness of a digit classifier based on a known spiking neural network architecture.1 We found
that processing simple oriented features rather than pixels had little impact on training speed (though it does have
an impact on the variability of training speed, Section 4.1) and accuracy (Section 4.2) but dramatically improved
robustness (Section 4.3). We also found that “resetting” some neurons post-training improved robustness without
compromising accuracy (Section 4.3). Processing oriented features (vertical and horizontal edges) increases the
model size (by 4x) over a pixel-based model, though the increase can be offset by sampling input images at a
lower resolution (without significant loss of accuracy for MNIST digit classification) as it is in the case of our
study.

Biological vision involves a hierarchy of processing stages, from detecting local features (oriented bars and
edges), to connecting these features to form contours and textures, and eventually shapes and surfaces. This rich
hierarchy of features is used to assign meaning to images. Yet, the model by Diehl and Cook (2015) omits the
entire hierarchy of feature detectors, assigning meaning directly to patterns of input pixels.1 Our work contrasts
the pixel-based models with models based on just two oriented features. Restricting to two orientations does
cause a small loss in accuracy, however, oriented features turn out to naturally suppress responses to error inputs,
making the networks more selective for inputs that are similar to the training data. This increased selectivity
may be an advantage in applications where error inputs are common and should just be ignored.

Biological vision is robust in the sense that it will rarely misclassify objects. Biologically, this is achieved
with a number of different means, e.g. by using context information. Our work investigates two possible ways
of responding to error inputs, both avoiding the use of context information. (1) Error suppression rests on the
increased selectivity of neurons trained on oriented features instead of pixels. This is a biologically plausible
mechanism. (2) Error detection uses dedicated “untrained” neurons that respond to “random” inputs. It is
an open question whether this is a biologically plausible mechanism. While actively “resetting” neurons isn’t
biologically plausible, we note that the reset neurons resemble neurons that aren’t trained yet. Thanks to STDP,
neurons are trained selectively rather than at a uniform rate. If the neuron population is big enough (i.e.,
significantly bigger than the 100 output neurons in our experiments, as is the case in biological vision), it is
plausible that some neurons will never be trained and will therefore be able to perform the same error detection
function as neurons that were reset.

Our model still falls short of biological vision in restricting to two orientations and directly assigning meaning
to patterns of oriented features instead of assembling complex shapes (e.g. angles, segments of curves) from
oriented features. Future work will investigate whether increasing the number of orientations and adding layers
to represent angles and curve segments can increase the accuracy and robustness of digit classification.



ACKNOWLEDGEMENTS

This research was supported by DASA, grant #ACC6036789, awarded to D.B., E.G., P.M. and K.A.

REFERENCES

[1] Diehl, P. U. and Cook, M., “Unsupervised learning of digit recognition using spike-timing-dependent plasticity,”
Frontiers Comput. Neurosci. 9, 99 (2015).

[2] Hubel, D. H. and Wiesel, T. N., “Receptive fields and functional architecture of monkey striate cortex,” The Journal
of physiology 195(1), 215–243 (1968).

[3] Kapadia, M. K., Westheimer, G., and Gilbert, C. D., “Spatial distribution of contextual interactions in primary
visual cortex and in visual perception,” J Neurophysiol 84(4), 2048–62 (2000).

[4] Carandini, M. and Heeger, D. J., “Summation and division by neurons in primate visual cortex,” Science 264(5163),
1333–6 (1994).

[5] Gheorghiu, E. and Kingdom, F. A., “Multiplication in curvature processing,” J Vision 9(2), 20–23 (2009).
[6] Anzai, A., Peng, X., and Van Essen, D. C., “Neurons in monkey visual area V2 encode combinations of orientations,”

Nat Neurosci 10(10), 1313–21 (2007).
[7] Dobbins, A., Zucker, S. W., and Cynader, M. S., “Endstopped neurons in the visual cortex as a substrate for

calculating curvature,” Nature 329(6138), 438–41 (1987).
[8] Hegde, J. and Van Essen, D. C., “Selectivity for complex shapes in primate visual area V2,” J Neurosci 20(5), RC61

(2000).
[9] Pasupathy, A. and Connor, C. E., “Shape representation in area V4: Position specific tuning for boundary confor-

mation,” Journal of Neurophysiology 86, 2505–2519 (2001).
[10] Pasupathy, A. and Connor, C. E., “Population coding of shape in area V4,” Nature Neuroscience 5(12), 1332–8

(2002).
[11] Felleman, D. J. and Van Essen, D. C., “Distributed hierarchical processing in the primate cerebral cortex,” Cerebral

Cortex 1(1), 1–47 (1991).
[12] Merigan, W. H., “Basic visual capacities and shape discrimination after lesions of extrastriate area V4 in macaques,”

Visual Neuroscience 13(1), 51–60 (1996).
[13] Connor, C. E., Brincat, S. L., and Pasupathy, A., “Transformation of shape information in the ventral pathway,”

Curr Opin Neurobiol 17(2), 140–7 (2007).
[14] Brincat, S. L. and Connor, C. E., “Underlying principles of visual shape selectivity in posterior inferotemporal

cortex,” Nat Neurosci 7(8), 880–6 (2004).
[15] Ito, M. et al., “Size and position invariance of neuronal responses in monkey inferotemporal cortex,” J Neurophys-

iol 73(1), 218–26 (1995).
[16] Tanaka, K., “Inferotemporal cortex and object vision,” Annu Rev Neurosci 19, 109–39 (1996).
[17] Gross, C. G., “Representation of visual stimuli in inferior temporal cortex,” Philos Trans R Soc Lond B Biol

Sci 335(1273), 3–10 (1992).
[18] Fujita, I. et al., “Columns for visual features of objects in monkey inferotemporal cortex,” Nature 360(6402), 343–6

(1992).
[19] Graham, N. V., “Beyond multiple pattern analyzers modeled as linear filters (as classical V1 simple cells): useful

additions of the last 25 years,” Vision Res 51(13), 1397–430 (2011).
[20] Landy, M. S., “Texture analysis and perception,” in [The New Visual Neurosciences ], Werner, J. S. and Chalupa,

L. M., eds., ch. 45, 639–652, MIT Press, Cambridge, Mass. (2013).
[21] Malik, J. and Perona, P., “Preattentive texture discrimination with early vision mechanisms,” J Opt Soc Am A 7(5),

923–32 (1990).
[22] Thielscher, A. and Neumann, H., “Neural mechanisms of human texture processing: texture boundary detection and

visual search,” Spat Vis 18(2), 227–57 (2005).
[23] Wilson, H. R., “Non-fourier cortical processes in texture, form, and motion perception,” in [Models of Cortical

Circuitry ], Ulinski, P. S. and Jones, E. G., eds., 13, 445–477, Plenum, New York (1999).
[24] Landy, M. S. and Bergen, J. R., “Texture segregation and orientation gradient,” Vision Res 31(4), 679–91 (1991).
[25] HAMIDA, S., CHERRADI, B., RAIHANI, A., and OUAJJI, H., “Performance evaluation of machine learning

algorithms in handwritten digits recognition,” in [2019 1st International Conference on Smart Systems and Data
Science (ICSSD) ], 1–6 (2019).

[26] Datta, G. and Beerel, P. A., “Can deep neural networks be converted to ultra low-latency spiking neural networks?,”
in [2022 Design, Automation & Test in Europe Conference & Exhibition (DATE) ], 718–723 (2022).

[27] Yi, Z., Lian, J., Liu, Q., Zhu, H., Liang, D., and Liu, J., “Learning rules in spiking neural networks: A survey,”
Neurocomputing 531, 163–179 (2023).

[28] Izhikevich, E., “Which model to use for cortical spiking neurons?,” IEEE Transactions on Neural Networks 15(5),
1063–1070 (2004).



[29] Vaila, R., Chiasson, J., and Saxena, V., “Deep convolutional spiking neural networks for image classification.”
https://arxiv.org/abs/1903.12272 (2019).

[30] He, W., Wu, Y., Deng, L., Li, G., Wang, H., Tian, Y., Ding, W., Wang, W., and Xie, Y., “Comparing SNNs and
RNNs on neuromorphic vision datasets: Similarities and differences,” Neural Networks 132, 108–120 (2020).

[31] Li, Z. and Meng, L., “Deep spiking neural networks for image classification,” International Journal of Human Factors
Modelling and Simulation 8(1), 21–35 (2023).

[32] Stimberg, M., Brette, R., and Goodman, D. F., “Brian 2, an intuitive and efficient neural simulator,” eLife 8, e47314
(Aug. 2019).

[33] Prewitt, J., “Object enhancement and extraction,” in [Picture Processing and Psychopictorics ], Lipkin, B. and
Rosenfeld, A., eds., 75–150, Academic Press (1970).

APPENDIX A. MORE RESULTS

Here we report on repeats of the experiments of sections 4.1 and 4.2 when training on the full MNIST dataset,
instead of training on just 10% of the dataset.

A.1 Speed of training convergence

We first investigate how the networks learn when trained on the full MNIST training dataset. We trained each
network for 2 epochs on all 60,000 MNIST training images. At intervals, the networks were frozen and and their
accuracy evaluated by classifying all 10,000 MNIST test images. Up to 10,000 training images, the networks
were evaluated every 1000 images. For the remainder of epoch 1, they were evaluated every 5000 images. For
epoch 2, the networks were evaluated every 10000 images.

Figure 8. Digit classification accuracy of 4 networks as training progresses (fulll MNIST training dataset).

Figure 8 shows the classification accuracy over the training time. While the 4 networks differ on the behaviour
at the start of training (as was observed in section 4.1), they converge from about 10,000 training images, and
appear to reach peak accuracy before the end of epoch 1, at around 40,000 images.‡ From that point on, accuracy
remains relatively stable, with an observable dip twards the end of each epoch for all networks; only the 28x28x2
Prewitt filter network shows more pronounced drops in accuracy at the end of the epochs. The table below
summarises the accuracy of each network as the geometric mean over the accuracy of epoch 2. The lower mean

‡This is consistent with the findings of Diehl and Cook (2015) which reports an average accuracy of 0.829 for a 28x28
pixel network of 100 neurons trained on 40,000 MNIST images.1

https://arxiv.org/abs/1903.12272


Table 4. Accuracy of classifying MNIST digits (full MNIST training and testing datasets).

SNN Accuracy Confidence
Q1 Q2 Q3

28x28 0.827 0.49 0.66 0.86
28x28 (reset) 0.829 0.52 0.68 0.85

28x28x2 0.780 0.40 0.55 0.83
28x28x2 (reset) 0.800 0.45 0.58 0.82

14x14 0.845 0.54 0.73 0.88
14x14 (reset) 0.835 0.55 0.73 0.86

14x14x2 0.842 0.52 0.73 0.88
14x14x2 (reset) 0.841 0.55 0.74 0.86

accuracy of the 28x28x2 Prewitt filter network is mainly due its pronounced drop in accuracy at the start and
end of the epoch; the mean accuracy of the other networks is comparable.

28x28 28x28x2 14x14 14x14x2
Mean accuracy 0.847 0.817 0.858 0.849

A.2 Impact of resetting neurons on accuracy and confidence

Next, we take the above networks, trained over the full two epochs, and “untrain” the 10 least confident neurons
of each of the four networks by resetting their input weights to their initial random state. We compare digit
classification accuracy on the full set of 10,000 MNIST test images before and after resetting neurons.

Table 4 shows the classification accuracy without and with resetting neurons, together with the quartiles for
the prediction confidence. The observations are similar to section 4.2. That is, resetting the 10 least confident
neurons has only a small effect on the digit classification accuracy. The largest effect is observed for the high-
resolution Prewitt filter network whose accuracy improves by 2 percentage points when resetting the 10 least
confident neurons; this may be due to the fact that resetting those 10 neurons undoes some of the damage that
was caused by overfitting at the end of the epoch.

The observations for prediction confidence are similar to before: Resetting the least confident neurons lifts
the lower quartile, and in some cases the median, due to removing the low-confidence contributions of the reset
neurons. Resetting also slightly lowers the upper confidence quartile.


	Introduction
	Related Work
	Biological Vision
	Object and shape processing
	Texture processing

	Digit classification using SNNs

	Methodology
	Background: Unsupervised learning of digits using SNN
	Training phase 1: Unsupervised clustering of input patterns
	Training phase 2: Supervised labelling of output neurons
	Prediction: Classification of digits

	Sensitivity to oriented features
	Detecting erroneous inputs

	Results and Discussion
	Speed of training convergence
	Impact of resetting neurons on accuracy and confidence of classifying MNIST digits
	Detecting non-digits

	Conclusions
	More Results
	Speed of training convergence
	Impact of resetting neurons on accuracy and confidence


