
Implementing a High-level Distributed-Memory
Parallel Haskell in Haskell

Patrick Maier and Phil Trinder

School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK
{P.Maier,P.W.Trinder}@hw.ac.uk

Abstract. We present the initial design, implementation and preliminary eval-
uation of a new distributed-memory parallel Haskell, HdpH. The language is a
shallowly embedded parallel extension of Haskell that supports high-level semi-
explicit parallelism, is scalable, and has the potential for fault tolerance. The
HdpH implementation is designed for maintainability without compromising per-
formance too severely. To provide maintainability the implementation is modular
and layered and, crucially, coded in vanilla Concurrent Haskell. Initial perfor-
mance results are promising for three simple data parallel or divide-and-conquer
programs, e. g., an absolute speedup of 135 on 168 cores of a Beowulf cluster.

1 Introduction

The multicore revolution is driving renewed interest in parallel functional languages.
Early parallel Haskell variants like GpH [19] and Eden [13] use elaborate runtime sys-
tems (RTS) to support their high-level coordination constructs - evaluation strategies
and algorithmic skeletons respectively. More recently the multicore Glasgow Haskell
Compiler (GHC) implementation also extends the RTS [16]. However these bespoke
runtime systems have development and maintainability issues: they are complex state-
ful systems engineered in low-level C and use message passing for distributed archi-
tectures. Worse still, they must be continuously re-engineered to keep up with the ever
evolving GHC research compiler.

To preserve maintainability and ease development several recent parallel Haskells
use Concurrent Haskell [17] as a systems language on a vanilla GHC rather than chang-
ing the GHC RTS; examples include CloudHaskell [6], and the Par Monad [15]. Our
new language, Haskell distributed parallel Haskell (HdpH), also follows this approach.

Table 1 compares the key features of general purpose parallel Haskells, and each
of these languages is discussed in detail in Sect. 2. Most of the entries in the table
are self-explanatory. Fault Tolerance means that the language implementation isolates
the heaps of each distributed node, and hence has the potential to tolerate individual
node failures - few Haskells have implemented fault tolerance. Determinism identifies
whether the language model guarantees that a function will be a function even if its
body is evaluated in parallel.

The crucial differences between HdpH and other parallel Haskells can be sum-
marised as follows. Both GHC and the Par Monad provide parallelism only on a single
multicore, where HdpH scales onto distributed-memory architectures with many mul-
ticore nodes. CloudHaskell replicates Erlang style [1] explicit distribution. It is most

2 Heriot-Watt/MACS Technical Report HW-MACS-TR-0091

Table 1. Parallel Haskell comparison

Low-level RTS Haskell-level RTS
Property \ Language GpH-GUM Eden GHC Par Monad CloudHaskell HdpH

Scalable (distributed memory) + + − − + +
Fault Tolerance (isolated heaps) − (+) + +
Polymorphic Closures + + + + − +
Pure, i.e. non-monadic, API + + + − − −
Determinism (+) − (+) + − −
Implicit Task Placement + + + + − +
Automatic Load Balancing + + + + − +

closely related to HdpH, but provides lower level coordination with explicit task place-
ment and no load management. As CloudHaskell distributes only monomorphic clo-
sures it is not possible to construct general coordination abstractions like evaluation
strategies or algorithmic skeletons.

Section 3 describes the key features of HdpH as follows.

– HdpH is scalable with a distributed memory model that manages computations on
more than one multicore node.

– HdpH provides high-level semi-explicit parallelism with
• Implicit task placement: the programmer is not required to explicitly place

tasks on specific nodes. Idle nodes seek work automatically.
• Automated and dynamic load management: the programmer is not required to

ensure that all nodes are utilised effectively. The implementation continuously
manages load.

• Polymorphism: polymorphic closures can be transferred between nodes.
• Powerful coordination abstractions: specifically both evaluation strategies and

algorithmic skeletons can be defined using a small set of polymorphic coordi-
nation primitives, see examples in Sect. 3.3.

– HdpH is designed with fault tolerance in mind.
• The separation of heaps provides fault isolation, making it possible to recover

from remote node failure.
• Fault tolerance necessitates non-determinism, as we will argue in Sect. 3.1.

HdpH is a distributed-memory parallel language, but not (yet) a distributed pro-
gramming language as it lacks crucial features such as support for distributed data
and exceptions. We leave the implementation of such features and of fault tolerant
skeletons to future work as discussed in Sect. 6.

Section 4 outlines the HdpH implementation design which aims to deliver accept-
able performance while being maintainable. Implementing the system in vanilla (GHC)
Concurrent Haskell is crucial to preserving maintainability, and enables the language
design space to be explored more readily than modifying an RTS written in C. Moreover
the implementation is layered and modular with coordination aspects such as commu-
nication, thread management, global address management, scheduling etc. realised in
independent modules. This design represents a middle ground between monolithic run-
time systems like GUM [20] and Eden/EDI [11,2], and kernel-based proposals [12,3].

Section 5 reports initial performance results for three simple data parallel or divide-
and-conquer programs on up to 168 cores of a Beowulf cluster. The HdpH system is
available for download [9].

Heriot-Watt/MACS Technical Report HW-MACS-TR-0091 3

2 Related Work

This section outlines parallel functional languages and implementations that have influ-
enced the design and implementation of HdpH. As HdpH is primarily control-oriented,
we do not consider data oriented parallel languages like DPH [4] or SAC [7] here. A
comprehensive survey of parallel functional languages is available in [21].

2.1 Shared-Memory Languages

There have been a number of parallel Haskell extensions [21], and several have ex-
tended the GHC compiler. A crucial feature of GHC is its concurrency support: light-
weight threads with extremely low thread management overheads.

The Par Monad [15] provides monadic control of concurrency, realising deter-
ministic pure parallelism. Moreover, the Par Monad allows the lifting of system-level
functionality (in the form of a work-stealing scheduler) to the Concurrent Haskell level.
Performance results demonstrate that the overhead associated with the Par Monad re-
mains low.

The GpH extension of Haskell focuses on pure parallelism and keeps many de-
tails of the parallel execution hidden from the programmer. Both shared- and distri-
buted-memory implementations [16,20] are available. The specification of parallelism
in GpH is non-monadic and less intrusive than in the Par Monad. Effective parallel
programming requires specifying both evaluation order and evaluation degree. To do
so elegantly evaluation strategies, i. e., high-level coordination abstractions have been
developed [19,14].

2.2 Distributed-Memory Languages

Eden extends Haskell with distributed-memory parallelism [13]. It supports process ab-
stractions, analogous to lambda abstractions, and uses process application to instantiate
parallelism. Placement of the generated threads and synchronisation between them is
implicit, and managed by the RTS. A higher level of abstraction is provided through
skeletons, capturing specific patterns of parallel execution, implemented using these
parallelism primitives.

Erlang is a distributed functional language originally developed by Ericsson for
constructing server-side telecommunications [1], and has experienced rapid uptake in a
range of industrial sectors. Erlang broadly follows the Actor model and is widely recog-
nised as a beacon language for distributed computing, influencing the design of many
languages and frameworks, for example Scala and F#. The key aspects of Erlang style
concurrency are first class processes that may fail without damaging others, fast pro-
cess creation and destruction, scalability, fast asynchronous message passing, copying
message-passing semantics (share-nothing concurrency), and selective message recep-
tion [22].

A recent development that heavily influenced our work, was the design and imple-
mentation of CloudHaskell [6] It emulates Erlang’s distributed programming model,
explicitly targeting distributed-memory systems, and implementing all parallelism ex-
tensions (processes with explicit message passing and closure serialisation) entirely

4 Heriot-Watt/MACS Technical Report HW-MACS-TR-0091

on the Haskell level. Initial performance results indicate that the overhead from using
Haskell as a system language is acceptable.

2.3 Parallel Functional Language Implementations

Many parallel functional language implementations use a sophisticated and low-level
RTS to coordinate parallelism. That is, the RTS schedules and distributes work, syn-
chronises and communicates with threads, and so forth. Implementations taking this
approach include Dream/EDI [13] for Eden, GUM [20] for distributed-memory GpH,
and the threaded GHC RTS [16] for shared-memory GpH.

The use of a low-level systems language may be necessary when the performance
impact of layers of abstraction cannot be tolerated. However, low-level implementa-
tions of parallel coordination tend to suffer from high maintenance cost, as seemingly
unrelated internal changes to the RTS, e. g., to the memory layout of closures, may
break parallel coordination. In contrast, the implementations of CloudHaskell [6] and
the Par Monad [15] leave the GHC RTS unchanged, and implement all coordination
functionality on the Haskell level. Using Haskell’s advanced abstraction mechanisms
ensures ease of maintainability and more readable implementations. Moreover GHC’s
light-weight threads deliver good performance.

3 Language Design

This section presents the initial design of HdpH. The design is strongly influenced by
GpH, by Eden’s EDI layer, and by two recent developments that lift functionality nor-
mally provided by a low-level RTS to the Haskell level.

The Par Monad [15], a shallowly embedded domain specific language (DSL) for de-
terministic shared-memory parallelism. Section 3.1 adapts this DSL to distributed-
memory parallelism, including semantic provisions for fault tolerance.

Closure serialisation in CloudHaskell [6]. Section 3.2 extends CloudHaskell’s clo-
sure representation to support polymorphic closure transformations, which Sec-
tion 3.3 exploits to implement high-level coordination abstractions.

3.1 Primitives

Figure 1 shows the basic primitives that HdpH exposes to the programmer, with shared-
memory primitives inherited from the Par Monad [15] to the left, and distributed-me-
mory primitives to the right.

The Par type constructor is a monad1 for encapsulating a parallel computation. The
basic primitive for generating shared-memory parallelism is fork, which forks a new
thread and returns nothing. To communicate the results of computations (and to block
waiting for their availability), threads employ IVars, which are essentially mutable
variables that are writable exactly once. The programmer has access to these via three

1 Par is a continuation monad like Claessen’s Poor Man’s Concurrency monad [5]; alternatively
Par could be based on Harrison’s resumption monad [8].

Heriot-Watt/MACS Technical Report HW-MACS-TR-0091 5

data Par a -- Par monad

eval :: a -> Par a

fork :: Par () -> Par ()

data IVar a -- buffers

new :: Par (IVar a)
put :: IVar a -> a -> Par ()
get :: IVar a -> Par a

data NodeId -- explicit locations

allNodes :: Par [NodeId]

data Closure a -- explicit, serialisable closures

spark :: Closure(Par ()) -> Par ()
pushTo :: Closure(Par ()) -> NodeId -> Par ()

data GIVar a -- global handles to IVars

glob :: IVar (Closure a) -> Par (GIVar (Closure a))
rput :: GIVar (Closure a) -> Closure a -> Par ()
at :: GIVar (Closure a) -> NodeId

Fig. 1. HdpH primitives. To the left types and primitives for shared memory inherited from the
Par Monad [15]; to the right types and primitives for distributed memory.

operations: IVar creation (new), blocking read (get), and write (put). Note that put
does not normalise its argument, unlike the put in [15]. Instead the programmer can
force expressions to weak-head normal form explicitly using eval; full normalisation
can be defined by combining eval with deepseq.

To extend the DSL towards distributed memory HdpH exposes abstract data types
for explicit locations, explicit closures (discussed in detail in Sect. 3.2), and global
IVars. An explicit location identifies a node, i. e., an operating system process running
HdpH, within the GHC RTS, possibly on multiple cores. HdpH is location-aware: The
programmer can test locations for equality, query the set of all locations (allNodes)
and query the current location (by myNode = fmap at (new >>= glob)).

The basic primitives for generating distributed-memory parallelism are spark and
pushTo. The former operates much like fork, generating a computation (henceforth
referred to as a spark) that may be executed on a different node. However, it can’t just
take a Par computation as an argument because such a computation can’t be serialised.
Instead, the argument to be sparked must be converted to an explicit closure first.
The pushTo primitive is similar except that it eagerly pushes a closure containing
a Par computation to a target node, where it is eagerly unwrapped and executed. In
contrast, spark just stores its argument in a local spark pool, where it sits waiting to
be distributed or scheduled by an on-demand work-stealing scheduler (Sect. 4.2).

To retrieve the results of remote closures or synchronise distributed computations,
HdpH introduces global IVars. These are simply global references to IVars, with three
operations: Creation (glob) by globalising a local IVar, remote write (rput), and in-
formation (at) about the location of the underlying IVar. To ensure that the values
written by rput are serialisable, these operations restrict the base type of their under-
lying IVars to closures. Hence all values transported between nodes, be it computations
or results, are closures — so results may again be computations. Note that there is no
remote read on global IVars — in this respect they are much like channels in Eden and
CloudHaskell, supporting remote write but only local read.

For comparison and demonstration we present three parallel Fibonacci functions
in Fig. 2. All three functions take two arguments: the second is the argument to the
Fibonacci function, and the first a granularity threshold below which to generate no
parallelism.

The first variant, pfib, uses the GpH par and pseq primitives. It can be executed
either on a shared-memory multicore using the GHC RTS or on distributed-memory

6 Heriot-Watt/MACS Technical Report HW-MACS-TR-0091

fib :: Int -> Int
fib n
| n <= 1 = 1
| otherwise = x + y

where x = fib (n-1)
y = fib (n-2)

spfib :: Int -> Int -> Par Int
spfib t n
| n <= t = return $ fib n
| otherwise = do

v <- new

fork $ spfib t (n-1) >>=
eval >>=
put v

y <- spfib t (n-2)
x <- get v
return (x + y)

pfib :: Int -> Int -> Int
pfib t n
| n <= t = fib n
| otherwise = x ‘par‘ y ‘pseq‘ x + y

where x = pfib t (n-1)
y = pfib t (n-2)

dpfib :: Int -> Int -> Par Int
dpfib t n
| n <= t = return $ fib n
| otherwise = do

v <- new
gv <- glob v
spark $(mkClosure [|dpfib t (n-1) >>=

eval >>=
rput gv . toClosure|])

y <- dpfib t (n-2)
clo_x <- get v
return (unClosure clo_x + y)

Fig. 2. Fibonacci numbers. To the left sequential code and shared-memory parallel code in HdpH;
to the right GpH code and distributed-memory parallel code in HdpH.

architectures using the GUM RTS. The second variant, spfib, uses the shared-memo-
ry primitives of the Par Monad, and is thus confined to the shared-memory GHC RTS.
The third variant, dpfib, employs the HdpH primitives and can be executed on shared
or distributed-memory architectures using the HdpH implementation.

There are many similarities between spfib and dpfib; the difference is that
spfib can simply fork the first recursive call, whereas dpfib must globalise the
IVar v, yielding global IVar gv, and wrap the first recursive call in an explicit clo-
sure generated by the Template Haskell splice $(mkClosure [|...|]), before
sparking. Moreover, dpfib must convert the result of the sparked computation to
an explicit closure with toClosure before writing to gv, and that closure must be
eliminated again with unClosure before adding the results of both recursive calls.

The HdpH primitives constitute a deliberately low-level language, much like the
GpH primitives. Section 3.3 will show how to build common abstractions on top.

Non-determinism, fault tolerance and the semantics of IVars. There is a subtle differ-
ence in the semantics of put in HdpH versus the Par Monad [15]. The latter forbids
racing put; any attempt to do so, i. e., any attempt to put into an already filled IVar,
will abort the program in the name of determinism. HdpH opts for a different and non-
deterministic semantics: putting into a full IVar has no effect. That is, only the first
put succeeds but subsequent puts aren’t fatal. The price we pay for the more flexi-
ble semantics is that Par computations remain confined to the monadic world. HdpH
only offers the monadic function runParIO :: Par a -> IO a to extract Par
computations, in contrast to the pure runPar :: Par a -> a of [15].

There are good reasons for accepting non-determinism in the distributed-memory
setting. Firstly, for a distributed computation to survive node failures, it must be able to
speculatively restart supposedly failed tasks. Such a speculative restart must share the
global IVar expecting its result with the original task, opening up a race if the original
task happens to be alive (e. g., because the executing node didn’t fail but was temporar-

Heriot-Watt/MACS Technical Report HW-MACS-TR-0091 7

ily unreachable or unresponsive). Secondly, many distributed algorithms are non-deter-
ministic by nature — insisting on determinism would severely limit expressiveness.

3.2 Explicit Closures

CloudHaskell [6] introduced the idea of making a thunk thk serialisable2 by construct-
ing an explicit closure consisting of an environment env storing the variables captured
by thk, and a function fun such that fun env = thk. Because all variables cap-
tured by thk have been abstracted out to env, fun does not itself capture any vari-
ables, that is all its free variables are top-level, which implies that fun itself could be
defined at top-level. CloudHaskell pulls two tricks to make explicit closures serialis-
able, i. e., an instance of class Binary. It assumes (1) that env is already serialised
and represented as a byte string that will be deserialised by fun, and (2) that fun is
serialisable as its code address. The latter trick requires a Haskell extension: a primi-
tive type constructor Static for reflecting code addresses of terms, plus term form-
ers static :: a -> Static a for obtaining the address of a term which could
be top-level, and unstatic :: Static a -> a for resolving such an address.
Though not (yet) implemented in GHC 7, we proceed with our language design in this
section as if Static were fully supported.3 Details about Static can be found in
[6] and are not relevant for the rest of this paper, save for the fact that Static is an
instance of the classes Binary and NFData.

CloudHaskell represents explicit closures as a pair of a serialised environment of
type Env, a synonym for byte strings, and a static deserialiser, i. e., the address of a
deserialiser.

data Closure a = MkClosure (Static (Env -> a)) Env

unClosure :: Closure a -> a
unClosure (MkClosure fun env) = (unstatic fun) env

Other than serialisation the only operations on closures that CloudHaskell exposes are
introduction by the constructor, and elimination by unClosure. As introduction is
lazy it delays serialising the environment until demanded, either by the closure being
serialised or eliminated. Oddly, closure introduction and elimination are asymmetric:
unClosure . MkClosure is not an identity, because unClosure eliminates not
only the constructor but also the closure representation. This does not matter as long as
closures are just used to ferry computations from one node to another, to be unpacked
and executed at the target node.

We consider the CloudHaskell Closure constructor too limited. Firstly, the con-
structor should be generalised to support both computation with closures as well as their
transportation. Ideally, Closure should be a functor, so closures can be transformed
without eliminating them. In addition there should be a special closure transformation

2 In keeping with the programming languages community, we take serialisation to mean the
process of encoding in-memory data structures into byte strings to be sent over the network.
This is not to be confused with the notion of serialisability in concurrency theory.

3 Like CloudHaskell, we emulate Static support by requiring the programmer to register all
Static functions in a lookup table.

8 Heriot-Watt/MACS Technical Report HW-MACS-TR-0091

data Closure a = UnsafeMkClosure
a -- actual thunk
(Static (Env -> a)) -- static deserialiser
Env -- serialised environment

instance Binary (Closure a) where
put (UnsafeMkClosure _ fun env) = put fun >> put env
get = do fun <- get

env <- get
let thk = (unstatic fun) env
return $ UnsafeMkClosure thk fun env

instance NFData (Closure a) where
rnf (UnsafeMkClosure _ fun env) = rnf fun ‘seq‘ rnf env

unClosure :: Closure a -> a
unClosure (UnsafeMkClosure thk _ _) = thk

toClosure :: (Binary a) => a -> Closure a
toClosure thk = UnsafeMkClosure thk (static decode) (encode thk)

mapClosure :: Closure (a -> b) -> Closure a -> Closure b
mapClosure clo_f clo_x = $(mkClosure [|unClosure clo_f $ unClosure clo_x|])

Fig. 3. HdpH closure representation and operations on closures

that forces, i. e., evaluates to normalform, its content. Finally, we’d like to avoid unnec-
essary serialisation, e. g., when eliminating a closure immediately after introduction.4

We use strategies to force the evaluation of a closure (Sect. 3.3), and will address the
other issues while introducing the enhanced HdpH closure representation in Fig. 3.

Dual closure representation. To avoid unnecessary serialisation HdpH maintains a dual
representation of closures, extending CloudHaskell’s closure representation with the ac-
tual thunk being represented, see the first argument of UnsafeMkClosure in Fig. 3.
This representation avoids unnecessary serialisation as Closure elimination is just a
projection on the first argument, involving no serialisation. Dual representation implies
the obligation to maintain the invariant that the two representations, the actual thunk
thk and its serialisable representation fun and env, are semantically and computa-
tionally equivalent. When constructing closures explicitly this obligation rests on the
programmer, which is why the constructor is termed UnsafeMkClosure.

The Binary instance maintains the invariant by serialising only the serialisable
representation fun and env, reconstructing the actual thunk thk upon deserialisation
by applying the static deserialiser fun to the serialised environment env in the same
way as CloudHaskell eliminates its explicit closures. Note that the reconstruction of
thk is lazy, and hence delayed until the explicit Closure is eliminated.

The NFData instance normalises only the serialisable representation fun and env,
not the actual thunk thk. Normalising thk, too, would break the dual representation
invariant because the actual closure would be in normal form but the serialisable rep-
resentation would not. Specifically, unClosure $ decode $ encode $ clo

4 This is not a concern if all closures are guaranteed to be serialised because they are to be
shipped across the network. However, computing with closures tends to create lots of interme-
diate closures, so treating them efficiently becomes important.

Heriot-Watt/MACS Technical Report HW-MACS-TR-0091 9

and unClosure clowould not have the same strictness properties if the actual thunk
thk were normalised.

Safe closure construction. As using UnsafeMkClosure is cumbersome and error-
prone, there are safe Closure constructions that guarantee the dual representation
invariant. The simplest such construction is toClosure, albeit only for serialisable
types, i. e., instances of class Binary. The function toClosure simply pairs a seri-
alised value with the appropriate static deserialiser which exists thanks to the Binary
context. Note that toClosure lazily delays serialising its argument until the resulting
Closure is serialised or normalised. In particular, unClosure . toClosure is
an identity that does not involve serialisation.

A more general safe Closure construction generates the arguments to the con-
structor UnsafeMkClosure automatically by macro expansion, using Template Has-
kell. This is done by function mkClosure :: Q Exp -> Q Exp, which safely
converts a quoted thunk, i. e., an expression in Template Haskell’s quotation brack-
ets [|...|], into a quoted Closure, to be spliced into the code using Template
Haskell’s splicing parentheses $(...). To explain what mkClosure does, we show
what the call in Fig. 2 expands to.
mkClosure [|dpfib t (n-1) >>= eval >>= rput gv . toClosure|]
==> [|let thk = dpfib t (n-1) >>= eval >>= rput gv . toClosure

env = encode (gv, t, n)
fun = static (λenv -> let (gv, t, n) = decode env in

dpfib t (n-1) >>= eval >>= rput gv . toClosure)
in UnsafeMkClosure thk fun env|]

To start, mkClosure finds the variables captured by the given thunk and packs them
into a tuple, here (gv, t, n). Then, it constructs the explicit Closure expression
(UnsafeMkClosure thk fun env), where thk is the given thunk, env is the
serialised environment, i. e., the serialised tuple of captured variables, and fun is a
static deserialiser. The latter is actually the code address of a wrapper around the given
thunk, abstracting over its serialised environment. That is, the wrapper is a λ-abstraction
whose body is the given thunk yet the captured variables (here gv, t and n) are now
let-bound as a result of deserialising the parameter env. The wrapper itself does not
capture any variables hence static is applicable.

Note how mkClosure eliminates two pitfalls that UnsafeMkClosure exposed
programmers to: (1) It guarantees the dual representation invariant, and (2) it ensures
that the tuple of captured variables is serialised and deserialised in exactly the same
shape and order.

Transforming closures. One might think that Closure should be an instance of the
Functor class. It would appear that fmap can be implemented by generating an ex-
plicit Closure which applies a function another closure, like so:
fmap :: (a -> b) -> Closure a -> Closure b
fmap f clo_x = $(mkClosure [|f $ unClosure clo_x|])

This implementation of fmap, however, does not compile because the argument to
mkClosure captures the function f, requiring f to be serialisable. Yet arbitrary func-
tions are not serialisable — that is the very reason for introducing the Closure type.

10 Heriot-Watt/MACS Technical Report HW-MACS-TR-0091

type Strategy a = a -> Par a

using :: a -> Strategy a -> Par a
x ‘using‘ strat = strat x

forceClosure :: (Binary a, NFData a) => Strategy (Closure a)
forceClosure clo = unClosure clo’ ‘deepseq‘ return clo’
where clo’ = toClosure $ unClosure clo

parList :: Closure (Strategy (Closure a)) -> Strategy [Closure a]
parList clo_strat = mapM spawn >=> mapM get
where spawn :: Closure a -> Par (IVar (Closure a))

spawn clo = do
v <- new
gv <- glob v
spark $ $(mkClosure [|(clo ‘using‘ unClosure clo_strat) >>= rput gv|])
return v

parListNF :: (Binary a, NFData a) => Strategy [Closure a]
parListNF = parList $(mkClosure [|forceClosure|])

parMap :: (Binary a, Binary b, NFData b) => Closure (a -> b) -> [a] -> Par [b]
parMap clo_f xs = do clo_ys <- map f clo_xs ‘using‘ parListNF

return $ map unClosure clo_ys
where f = mapClosure clo_f

clo_xs = map toClosure xs

Fig. 4. Task-farm skeleton implemented via closure strategies

Nonetheless, the idea of an fmap-like Closure transformation can be salvaged if
we insist on the function argument being a Closure itself. Figure 3 shows the resulting
functor-like transformation mapClosure, promoting a function Closure to a func-
tion on Closures. Note how mapClosure is implemented in terms of Closure
elimination and introduction; that is why our efforts in curbing unnecessary serialisa-
tion overhead are relevant.

In fact, mapClosure is not just a functor-like transformation; it actually is (the
morphism part of) a functor, just not the type of functor that would fit into the Functor
class. Instead, it is a functor mapping function Closures to functions on Closures,
see Appendix A.

3.3 Strategies and Skeletons

Directly using coordination primitives, like those in Sect. 3.1, does introduce paral-
lelism but obscures code by intertwining computation and coordination aspects. To dis-
entangle coordination and computation we aim to develop higher-level abstractions over
the primitives, and Fig. 4 shows some simple examples.

Strategies are compositional building blocks for coordination developed for GpH in
[19,14]. Following [14], strategies in HdpH are identity functions in the Par monad,
i.e. functions of type a -> Par a whose denotational semantics is the identity. A
strategy may cause sequential or parallel evaluation of their argument as a side effect.
Being based on the Par monad rather than the Eval monad of [14] has implications
because the Par monad can’t be escaped as easily as the Eval monad. For example,
strategy application with using must stay in Par. Moreover, the strategy composition

Heriot-Watt/MACS Technical Report HW-MACS-TR-0091 11

dot that was used extensively in the strategies library of [14] cannot be expressed
without leaving the monad, nor can strategies for infinite data structures like rolling
buffers for lazy streams. Nevertheless, many useful strategy combinators can.

Since all distributed-memory parallelism in HdpH involves explicit Closures, we
focus on Closure strategies. The most basic of these is forceClosure (see Fig. 4),
which fully normalises the thunk inside a Closure. It does so by eliminating the
Closurewith unClosure, then converting the resulting thunk into a new Closure
with toClosure, before normalising the thunk with deepseq and returning the new
closure. Note how this is different from just deepseqing the thunk and returning the
original Closure, which would result in an evaluated Closure that would revert to
its unevaluated state upon serialisation.

The parList strategy combinator applies a strategy to a all elements of a list in
parallel. The list elements are of type Closure a , so we expect an argument of type
Strategy (Closure a); however, the strategy argument needs to be serialised
itself, see the definition of spawn, so it must be wrapped in another Closure. The
implementation of parList is straightforward: Spawn all strategy applications with
mapM spawn producing a list of IVars, then read the results back with mapM get;
the structure of the code for spawn itself is similar to that of dpfib in Fig. 2. The
strategy parListNF, which fully normalises a list of closures in parallel, is derived by
applying parList to forceClosure after wrapping the latter in another Closure.

Skeletons are polymorphic higher order functions that abstract common parallel pro-
gramming patterns, e. g., task farms. Thanks to polymorphic closure transformations
like mapClosure and polymorphic strategies like parListNF, we can build simple
skeletons like GpH does. For example, Fig. 4 shows the task farm skeleton parMap,
which applies a function closure to all elements of a list in parallel using the strategy
parListNF. A sample use of parMap to implement a data-parallel computation can
be found in Appendix B.

In the implementation of parMap, we can still observe the separation of compu-
tation (the clo_ys <- map f clo_xs part of the first line) and coordination (the
‘using‘ parListNF) though it is muddied in the rest of the function that deals
with the necessary closure conversions and eliminations.

4 Implementation Design

For maintainability HdpH is implemented in a layered fashion with coordination aspects
such as communication, global reference management, spark management, scheduling,
etc. realised in independent modules. Figure 5 depicts the HdpH architecture in terms
of state, i. e., mutable data structures in Haskell, and agents, i. e., Haskell IO threads.
Each node runs several thread schedulers, typically one per core. Each scheduler owns
a dedicated thread pool (a concurrent deque) that may be accessed by other schedulers
for stealing work. Each node runs a message handler, which shares access to the spark
pool (another concurrent deque) with the schedulers. Each node also has a registry (a
concurrent map) of global IVars that is shared between message handler and schedulers.

Inter-node communication is abstracted into a communication layer, that provides
startup and shutdown functionality, node IDs, and seamless peer-to-peer send/receive

12 Heriot-Watt/MACS Technical Report HW-MACS-TR-0091

threadpool threadpool

sparkpool

registry

schedulerscheduler

threadpool

sparkpool

registry

scheduler

msg handlermsg handler

node 1 Haskell heaps node 2

IO threads

Fig. 5. HdpH system architecture; coupling a dual core and a uni-core node

of arbitrarily sized byte strings. Currently this layer is based on MPI; we plan ports to
other network protocols with better support for fault tolerance.

Thread scheduling is based on the work-stealing scheme of the Par Monad [15],
except that HdpH implements a two-tier work pool. Idle schedulers first try to steal
threads from other thread pools; if that fails they try to pick sparks from the spark pool.

4.1 Global References and Global IVars

Global references provide a type-safe way of accessing remotely hosted objects (Fig. 6).
A global reference records the type of the referred-to object as a phantom type, i. e.,
ref :: GRef t refers to an object of type t. A global reference is represented by a
pair of a node ID identifying the host of the referred-to object and a name that is unique
on that host (and stays unique over the life span of the host). This yields globally unique
identifiers with cheap projection, at, to the node component, and straightforward seri-
alisation and normalisation.

The link between a global reference (whose host is the current node) and its referred-
to object is established by the registry, a concurrently mutable lookup table, much like
the GALA table in the GUM RTS, except that the registry is implemented in Haskell
(currently as mutable reference to an immutable finite map). There are two basic op-
erations on global references: (1) Introducing a fresh one (by globaliseing a local
object) and (2) eliminating an existing one (by dereferencing it). However, to avoid
having to implement a global garbage collection, we add a third operation for freeing

data GRef a at :: GRef a -> NodeId
instance Eq (GRef a) where { ... } globalise :: a -> IO (GRef a)
instance Binary (GRef a) where { ... } deref :: GRef a -> IO (Maybe a)
instance NFData (GRef a) where { ... } free :: GRef a -> IO ()

type GIVar a = GRef (IVar a)

glob :: IVar (Closure a) -> Par (GIVar (Closure a))
glob = lift . globalise

rput :: GIVar (Closure a) -> Closure a -> Par ()
rput gv clo = pushTo clo’ (at gv)

where clo’ = $(mkClosure [|lift (deref gv) >>=
maybe
(return ())
(λv -> put v clo >> lift (free gv))|])

Fig. 6. API of global references and implementation of global IVars

Heriot-Watt/MACS Technical Report HW-MACS-TR-0091 13

a global reference. Thus, we are faced with the problem that a global reference may be
dead (because it has been freed earlier) when we attempt to dereference it, which
explains why deref returns a Maybe type.

In many ways, global references are like stable names: they provide stable, global
and type-safe identifiers for the objects they refer to. There is one essential difference:
The life time of a stable name is tied to the life time of its referred-to object — stable
names whose objects have vanished may be garbage collected and re-used. In contrast,
the life time of a global reference is decoupled from the life time of its object (since the
object may live in a different heap). Hence global references must never be re-used.

Global references aren’t exposed in HdpH. Instead they serve to implement global
IVars: a GIVar is simply a global reference to an IVar (Fig. 6) and inherits the prop-
erties of global references, including serialisability. Moreover, glob simply lifts the
respective operation on global references to the Par monad.

The semantics of rput is more complex: it pushes a computation to the node host-
ing the IVar referred to by gv. That computation dereferences the global reference and,
depending on the outcome, either returns immediately (in case the global reference was
dead) or else writes clo to the referred-to IVar and frees the global reference gv.
Note that the action on dead references is consistent with the semantics for IVars. If
rput encounters a dead global IVar gv then gv must have been filled by an earlier,
successful rput, and in that case put would fail silently, just as rput does.

4.2 Spark Management

HdpH re-implements the spark management of GUM [20] at the Haskell level. Each
node stores sparks, i. e., values of type Closure (Par ()), in a pool. Sparks enter the
pool either on being sparked or on being received in a SCHEDULE message. Sparks
leave the pool either to be turned into local threads (by eliminating the Closure),
or to be SCHEDULEd on another node, which entails serialising the Closure. Cur-
rently the spark selection strategy is purely age-based: the youngest ones are turned into
threads, the oldest ones are SCHEDULEd away.

When the spark pool is running low, a FISH message is sent to a random node (or
to a node known to have had excess sparks recently). If a node receives a FISH, it either
replies with a SCHEDULE (in case it has excess sparks to give away) or forwards the
FISH to a random node. To avoid FISH messages circulating forever, each FISH counts
the number of times it is forwarded. If the counter reaches a threshold, the FISH expires
and a NOWORK message is returned to its originating node, which will wait for some
time before sending the next FISH.

Executing pushTo clo node sends a PUSH message containing clo to node.
Upon receiving a PUSH the message handler eliminates the Closure and executes
the resulting computation without waiting for a scheduler to become available. Thus
pushTo is suitable for very short and urgent actions like writing to an IVar or forking
a thread.

14 Heriot-Watt/MACS Technical Report HW-MACS-TR-0091

Fibonacci SumEuler (prim) SumEuler (parMap)
nodes cores runtime error speedup runtime error speedup runtime error speedup

sequential 424.58s 6% 355.69s 8% see columns to the left
1 6 75.64s 1% 5.6 62.31s < 0.5% 5.7 62.65s < 0.5% 5.7
2 12 42.29s < 0.5% 10.0 32.72s < 0.5% 10.9 32.71s < 0.5% 10.9
3 18 28.32s 1% 15.0 22.07s < 0.5% 16.1 22.14s 1% 16.1
4 24 20.25s < 0.5% 21.0 16.42s 1% 21.7 16.47s < 0.5% 21.6
6 36 14.09s 1% 30.1 11.13s 1% 31.9 11.12s 1% 32.0
8 48 10.37s 1% 41.0 8.48s 1% 42.0 8.47s < 0.5% 42.0

12 72 6.81s 1% 62.3 5.91s 2% 60.2 5.91s 1% 60.2
16 96 5.26s 2% 80.7 4.47s 3% 79.5 4.53s 1% 78.5
20 120 4.21s 2% 100.9 3.79s 5% 93.8 3.83s 9% 92.9
24 144 3.55s 2% 119.7 3.99s 13% 89.1 3.29s 16% 108.0
28 168 3.14s 7% 135.4 3.72s 7% 95.6 3.25s 7% 109.5

6 12 18 24 36 48 72 96 120
144

168
 0

 20

 40

 60

 80

 100

 120

 140

 160Speedupideal
Fibonacci

SumEuler (prim)
SumEuler (parMap)

6 12 18 24 36 48 72 96 120
144

168
 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

Efficiency [%] Fibonacci
SumEuler (prim)

SumEuler (parMap)

Fig. 7. Results of three benchmarks: runtime, absolute speedup and efficiency

4.3 Current Limitations of the HdpH Implementation

At the time of writing, two issues handicap the usability of HdpH. Firstly, the lack of
Static support in GHC necessitates work-arounds that bloat the number of top-level
declarations and burden the programmer with explicit Static registration. Secondly,
the MPI-based communication layer is performing poorly on large messages, which
severely affects data-intensive applications.

5 Preliminary Performance Results

To investigate the scalability and efficiency of HdpH we have benchmarked three sim-
ple parallel programs on a Beowulf cluster. Each Beowulf node comprises two Intel
quad-core CPUs (Xeon E5504) at 2GHz, sharing 12GB of RAM. Nodes are connected
via Gigabit Ethernet and run Linux (CentOS 5.7 x86 64). HdpH (version 0.3.0) and the
benchmarks were built with GHC 7.2.1 and linked against the MPICH2 library (ver-
sion 1.2.1p1). Benchmarks were run on up to 28 cluster nodes; to limit variability we
used only 6 cores per node. Reported runtime is median wall clock time over 7 execu-
tions. Reported error is standard deviation relative to median runtime; percentages in
the low single digits indicate high quality measurements.

Figure 7 summarises our results in terms of runtime, absolute speedup and effi-
ciency. The Fibonacci benchmark is a regular divide-and-conquer algorithm computing
dpfib 30 50 from Fig. 2. The program generates 17710 sparks with an average gran-
ularity of 25 milliseconds. With efficiency declining very slowly, Fibonacci scales very

Heriot-Watt/MACS Technical Report HW-MACS-TR-0091 15

well, yielding a maximum speedup of 135 on 168 cores. The reason is that a regular
divide-and-conquer algorithm tends to generate work on many nodes, so work stealing
via random fishing tends to be very effective.

The two SumEuler benchmarks map Euler’s totient function over [1..65536]
and reduce the result to a sum. Both are regular, flat data-parallel algorithms, where
the main thread deals the input list in a round-robin fashion to 1024 sparks (with a
granularity of about 350 milliseconds each), and sums up the results. The two SumEuler
benchmarks differ in that one is implemented solely in terms of the HdpH primitives
whereas the other relies on the parMap skeleton (and hence on polymorphic closure
operations). Code for both versions can be found in Appendix B.

Both SumEuler benchmarks scale worse than Fibonacci, with efficiency declining
faster and maximum speedup limited to about 110 on 168 cores, because the main
node is bound to become a bottleneck. Remarkably though, both SumEuler benchmarks
perform virtually the same,5 suggesting that the overhead of parMap is negligible.

Finally, we observe that all benchmarks achieve their peak efficiency, about 95%,
on a single node. Efficiency drops steeply (to 80–90%) when adding a second node and
then declines more slowly and steadily. The reason for this single-node efficiency boost
is that HdpH completely avoids serialisation overheads when running on a single node.

6 Conclusion and Future Work

We have presented the initial design, implementation and preliminary evaluation of
a new distributed-memory parallel Haskell, HdpH. The language supports high-level
semi-explicit parallelism, is scalable, and has the potential for fault tolerance (Sect. 3).
The HdpH implementation is designed for maintainability. It does not rely on a bespoke
low-level RTS but is implemented in Concurrent Haskell as supported by the GHC
(Sect. 4). Initial performance results for simple benchmarks are promising with good
efficiency and absolute speedups (Sect. 5).

HdpH is still a young project, and development continues in several directions. We
are experimenting with fault tolerant skeletons, e. g., task farms that guarantee evalua-
tion of all tasks despite repeated node failures. We are exploring how to extend HdpH
towards fully-fledged distributed programming, specifically how to handle distributed
data and exceptions in the style of GdH [18]. We are also developing a profiler to analyse
HdpH programs as well as the HdpH implementation. Finally, we plan to benchmark
HdpH on realistic problems and compare its performance to other parallel Haskells.

In the medium term we plan to use HdpH as the implementation language for the
SymGridPar2 middleware providing parallel execution of large GAP computational al-
gebra problems [10]. Key requirements for SymGridPar2 are the scalability and relia-
bility supported by the HdpH distributed-memory programming model.

Acknowledgements. Thanks to Andrew Black, Jeff Epstein, Hans-Wolfgang Loidl,
and Rob Stewart for stimulating discussions. This research is supported by the projects

5 The speedup and efficiency graphs suggest that the parMap-based SumEuler outperforms the
other beyond 120 cores, but the measurement errors are too high to support such a conclusion.

16 Heriot-Watt/MACS Technical Report HW-MACS-TR-0091

HPC-GAP (EPSRC EP/G05553X), SCIEnce (EU FP6 RII3-CT-2005-026133), and RE-
LEASE (EU FP7-ICT 287510).

References

1. Armstrong, J.L., Virding, S.R., Williams, M.C., Wikstrom, C.: Concurrent Programming in
Erlang. Prentice-Hall, 2nd edn. (1996)

2. Berthold, J.: Explicit and implicit parallel functional programming: concepts and implemen-
tation. Ph.D. thesis, Philipps-Universität Marburg, Germany (2008)

3. Berthold, J., Al Zain, A., Loidl, H.W.: Scheduling light-weight parallelism in ArTCoP. In:
PADL 2008, San Francisco, USA. pp. 214–229. LNCS 4902, Springer (2008)

4. Chakravarty, M.M.T., Leshchinskiy, R., Peyton-Jones, S.L., Keller, G., Marlow, S.: Data
Parallel Haskell: a status report. In: DAMP 2007, Nice, France. pp. 10–18. ACM Press (2007)

5. Claessen, K.: A poor man’s concurrency monad. J. Funct. Program. 9(3), 313–323 (1999)
6. Epstein, J., Black, A.P., Peyton-Jones, S.L.: Towards Haskell in the cloud. In: Haskell 2011,

Tokyo, Japan. pp. 118–129. ACM Press (2011)
7. Grelck, C., Scholz, S.B.: SAC - a functional array language for efficient multi-threaded exe-

cution. International Journal of Parallel Programming 34(4), 383–427 (2006)
8. Harrison, W.L.: The essence of multitasking. In: AMAST 2006, Kuressaare, Estonia. pp.

158–172. LNCS 4019, Springer (2006)
9. Haskell distributed parallel Haskell, https://github.com/PatrickMaier/HdpH

10. HPC-GAP: High Performance Computational Algebra and Discrete Mathematics, http:
//www-circa.mcs.st-andrews.ac.uk/hpcgap.php

11. Klusik, U., Ortega-Mallén, Y., Peña, R.: Implementing Eden — or: Dreams become reality.
In: IFL 1998, London, UK. pp. 103–119. LNCS 1595, Springer (1999)

12. Li, P., Marlow, S., Peyton-Jones, S.L., Tolmach, A.P.: Lightweight concurrency primitives
for GHC. In: Haskell 2007, Freiburg, Germany. pp. 107–118. ACM Press (2007)

13. Loogen, R., Ortega-Mallén, Y., Peña-Marı́, R.: Parallel functional programming in Eden. J.
Funct. Program. 15(3), 431–475 (2005)

14. Marlow, S., Maier, P., Loidl, H.W., Aswad, M.K., Trinder, P.W.: Seq no more: Better strate-
gies for parallel Haskell. In: Haskell 2010, Baltimore, USA. pp. 91–102. ACM Press (2010)

15. Marlow, S., Newton, R., Peyton-Jones, S.L.: A monad for deterministic parallelism. In:
Haskell 2011, Tokyo, Japan. pp. 71–82. ACM Press (2011)

16. Marlow, S., Peyton-Jones, S.L., Singh, S.: Runtime support for multicore Haskell. In:
ICFP 2009, Edinburgh, Scotland. pp. 65–78. ACM Press (2009)

17. Peyton-Jones, S.L., Gordon, A., Finne, S.: Concurrent Haskell. In: POPL 1996, St. Peters-
burg Beach, USA. pp. 295–308 (1996)

18. Pointon, R.F., Trinder, P.W., Loidl, H.W.: The design and implementation of Glasgow dis-
tributed Haskell. In: IFL 2000, Aachen, Germany. pp. 53–70. LNCS 2011, Springer (2001)

19. Trinder, P.W., Hammond, K., Loidl, H.W., Peyton-Jones, S.L.: Algorithms + strategy = par-
allelism. J. Funct. Program. 8(1), 23–60 (1998)

20. Trinder, P.W., Hammond, K., Mattson Jr., J.S., Partridge, A.S., Peyton-Jones, S.L.: GUM: A
portable parallel implementation of Haskell. In: PLDI 1996, Philadelphia, USA. pp. 79–88.
ACM Press (1996)

21. Trinder, P.W., Loidl, H.W., Pointon, R.F.: Parallel and distributed Haskells. J. Funct. Pro-
gram. 12(4&5), 469–510 (2002)

22. Wiger, U.: What is Erlang-style concurrency?, http://ulf.wiger.net/weblog/
2008/02/06/what-is-erlang-style-concurrency/

https://github.com/PatrickMaier/HdpH
http://www-circa.mcs.st-andrews.ac.uk/hpcgap.php
http://www-circa.mcs.st-andrews.ac.uk/hpcgap.php
http://ulf.wiger.net/weblog/2008/02/06/what-is-erlang-style-concurrency/
http://ulf.wiger.net/weblog/2008/02/06/what-is-erlang-style-concurrency/

Heriot-Watt/MACS Technical Report HW-MACS-TR-0091 17

A Categorical Structure on Closures

We’ve seen in Section 3.2 that Closure isn’t a functor, yet mapClosure looks sus-
piciously similar to fmap. Why is this? It turns out that mapClosure is indeed the
morphism map of a functor into the subcategory induced by the Closure type con-
structor — the functor just does not originate in the standard category of Haskell types
(which is required for instances of the Functor class).

Let Hask be the standard category of Haskell types, whose objects are Haskell
types and whose morphisms are Haskell functions, with the standard composition (.)
and unit id. Let Closure be the full subcategory of Hask induced by the Closure
type constructor, i. e., objects are types of the form Closure t, for some type t, and
morphisms, composition and unit are inherited from Hask. Now let Clo be a differ-
ent category of closures whose objects are the objects of Closure (i. e., all types of the
form Closure t) but whose morphisms are function closures. That is, a morphism
f : Closure s → Closure t in Clo is a closure of type Closure (s -> t).
We provide unit idClosure and composition compClosure as defined below. It is
easily verified that idClosure and compClosure satisfy the identity and associa-
tivity laws, making Clo a category indeed.

idClosure :: Closure (a -> a)
idClosure = $(mkClosure [|id|])

compClosure :: Closure (b -> c) -> Closure (a -> b) -> Closure (a -> c)
compClosure clo_g clo_f = $(mkClosure [|unClosure clo_g . unClosure clo_f|])

Now, we can define a functor F from Clo to Closure whose object map is the iden-
tity and whose morphism map is mapClosure, mapping any morphism in Clo (i. e.,
any function closure) to the corresponding morphism in Closure (i. e., lifting the func-
tion closure to a function on closures). Remains to show that F preserves identity and
distributes over composition, which amounts to showing the validity of the following
equations (again easily verified).

mapClosure idClosure = id

mapClosure (clo_g ‘compClosure‘ clo_f) = mapClosure clo_g . mapClosure clo_f

B Code for Sum of Euler’s Totients

sumeuler_prim :: Int -> [Int] -> Par Integer
sumeuler_prim sparks xs = sum <$> (mapM join =<< mapM spark_sumeuler xss)
where xss = deal sparks xs

spark_sumeuler :: [Int] -> Par (IVar (Closure Integer))
spark_sumeuler xs = do
v <- new
gv <- glob v
spark $(mkClosure [|eval (sumeuler xs) >>= rput gv . toClosure|])
return v

join :: IVar (Closure Integer) -> Par Integer
join = return . unClosure <=< get

sumeuler_parMap :: Int -> [Int] -> Par Integer
sumeuler_parMap sparks xs = sum <$> parMap $(mkClosure [|sumeuler|]) xss
where xss = deal sparks xs

18 Heriot-Watt/MACS Technical Report HW-MACS-TR-0091

sumeuler :: [Int] -> Integer
sumeuler = sum . map totient

totient :: Int -> Integer
totient n = toInteger $ length (filter (k -> gcd n k == 1) [1 .. n])

deal :: Int -> [a] -> [[a]]
deal players = Data.List.transpose . chunk players

chunk :: Int -> [a] -> [[a]]
chunk size [] = []
chunk size xs = ys : chunk size zs where (ys,zs) = splitAt size xs

