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Abstract. Vectors and bags are basic collection data structures, which are used
frequently in programs and specifications. Reasoning about these data structures
is supported by established algorithms for deciding ground satisfiability in the
theories of arrays (for vectors) and multisets (for bags), respectively. Yet, these
decision procedures are only able to reason about vectors and bags in isolation,
not about their combination.
This paper presents a decision procedure for the combination of the theories of
vectors and bags, even when extended with a function bagof bridging between
vectors and bags. The function bagof converts vectors into the bags of their el-
ements, thus admitting vector/bag comparisons. Moreover, for certain syntacti-
cally restricted classes of ground formulae decidability is retained if the theory
of vectors is extended further with a map function which applies uninterpreted
functions to all elements of a vector.

1 Introduction

Vectors and bags are basic collection data structures, which are used frequently in pro-
grams and specifications. Reasoning about these data structures is supported by decision
procedures for deciding the satisfiability of quantifier-free formulae in the theories of
arrays (for vectors) and multisets (for bags), respectively. However, known decision pro-
cedures are essentially only able to reason about vectors and bags in isolation, whereas
practical software verification problems often require non-trivial combinations.

Let us illustrate this problem with an example. Figure 1 shows a Java method
sendBulk taking a message text msg, a group of recipients group (represented as
an array of phone numbers) and a resource manager mgr holding (symbolic represen-
tations of) the resources required to send text messages to the recipients. As the cost of
sending text messages may vary depending on the recipient, the state of a resource man-
ager cannot be simply the number of messages that may be sent; instead it should be a
multiset of resources, representing exactly how many messages may be sent to whom.
In order to enforce the resource limit, at least at run-time, actual use of resources must
be preceded by a call to the resource manager’s use method, which checks whether the
required resource is present and if so, deduces it, otherwise aborts the program. This is
what’s happening in the body of method sendBulk, which iterates over group, send-
ing msg to each member by calling SMS.send, but only after checking for and using
up the associated resource by calling mgr.use. This approach to run-time monitoring
of resources via explicit resource managers has been described in [1], for example.



void sendBulk(String msg, PhoneNum[] group, ResourceMgr mgr) {
for (int i=0; i < group.length; i++) {

mgr.use(MessageResource(group[i]));
SMS.send(msg, group[i]);

}
}

PreCond ≡ bagof(mapMessageResource(group)) ⊆ mgr

PostCond ≡ \old(mgr) = mgr ] bagof(mapMessageResource(group))

LoopInv ≡ 0 ≤ i ≤ group.length ∧
bagof(mapMessageResource(group[i:group.length])) ⊆ mgr ∧
\old(mgr) = mgr ] bagof(mapMessageResource(group[0:i]))

VC ≡ LoopInv ∧ ¬LoopInv [i+ 1/i,mgr′/mgr] ∧ i < group.length ∧
count(mgr,MessageResource(group[i])) > 0 ∧
mgr = mgr′ ] JMessageResource(group[i])K(1)

Fig. 1. Java bulk messaging example: code and specification of send loop.

Run-time monitoring provides dynamic guarantees of resource safety, as abuse of
resources will be trapped. However, aborting a program midway is not always a desir-
able solution; it would be better if we could guarantee statically that a program will
never even attempt to abuse resources. This is done in [2], which presents a type system
for proving static resource safety in a programming language with explicit resource
managers. When proving resource safety of a method like sendBulk, whether it is
done via a type system as in [2] or in the more traditional way by generating veri-
fication conditions, the hard part is reasoning about constraints between the program
variables. Ideally, we’d like to have fully automated theorem provers for this task.

Let us take a look at the constraints required to express invariants and pre- and
postconditions for sendBulk, see the bottom half of Figure 1. Informally, the pre-
condition states that mgr is a super-multiset of the vector group, when the latter is
viewed as a multiset of resources. To express this view, we first need to convert group
into a vector of resources (by applying the map function) and then into a multiset of
resources (by applying the bagof function). The postcondition states that the old mgr
splits into two multisets: the new mgr and the multiset of resources corresponding to
the vector group. The loop invariant essentially combines pre- and postcondition, but
for different slices of the vector group. The first conjunct bounds the loop variable i,
the second is the precondition for the remainder of the loop, i. e., for the subvector from
index i to the end, and the third is the effect of the loop so far, i. e., the postcondition
for the subvector from index 0 up to (but excluding) i. The (negated) verification con-
dition conjoins the loop invariant before, the negated loop invariant after the execution
of the loop (arising by substituting the variables i and mgr), the loop condition, and
the precondition (mgr has some resources corresponding to number group[i]) and
effect (mgr′ holds one unit of resource less than mgr) of the loop body. Hence, to ver-
ify the loop invariant of an example even this simple we must prove unsatisfiability of



constraints about bags, vectors, subvectors, the map function for transforming vectors
pointwise, and the bagof function for transforming vectors into multisets.

Decision procedures for vectors (or arrays) exist for quite some time; early work
goes back to the late 1970s [6, 10]. Recently, [4] and [3] found expressive yet decidable
extensions of the theory arrays by injectivity predicates and by restricted quantification
over array indices, respectively. Decision procedures for bags (or multisets) have been
published recently in [12] and [7, 8], where the latter supports a cardinality operator.
However, decision procedures combining vectors and bags and linking them via the
bagof function (or something similar) do not exist.

The main contribution of this paper is a decision procedure for ground satisfiabil-
ity in the combination of the theories of vectors and bags extended with the function
bagof . For certain syntactically restricted classes of ground formulae decidability is re-
tained if the theory of vectors is extended further with a mapf function for transforming
vectors pointwise by applying the uninterpreted function f . The decision procedure re-
duces formulae containing bagof(·) to formulae without by instantiating universally
quantified variables in the axiomatisation of the bagof function, eventually reducing
the problem to the theories of vectors and bags. It relies on a decision procedure for
the Array Property Fragment described in [3] and on a decision procedure for multisets
with cardinality described in [7, 8].

Plan. Section 2 introduces some basic notation. Section 3 presents the theories of bags,
vectors, map and bagof functions. Section 4 utilises known results to construct a deci-
sion procedure for the combination of the theories of bags and vectors (including map).
Section 5 presents our main result: an extension of the decision procedure (and its proof
of correctness) to cope with bagof .

2 Preliminaries

We work in the framework of many-sorted first-order logic with equality, assuming
familiarity with the basic syntactic and semantic concepts. Below we fix some notation.

Throughout the paper, we fix three countably infinite and pairwise disjoint uni-
verses: a set S of sorts, a set F of function symbols and a set X of variable symbols. By
S+ we denote the set of non-empty words over a set S.

Signatures. A decorated variable xs is a pair consisting of a variable x ∈ X and a
sort s ∈ S. A decorated function symbol fw is a pair consisting of a function symbol
f ∈ F and an arity w ∈ S+. A decorated function symbol cs of arity s ∈ S is called a
decorated constant. For the sake of readability, we may write decorated constants and
function symbols in the form c : s and f : s1×. . .×sn→s0 instead of cs and fs0s1...sn

,
respectively. We may drop decorations entirely if they are clear from the context.

A (many-sorted) signature Σ is a pair Σ = 〈S, F 〉 where S ⊆ S is a non-empty
finite set of sorts and F ⊆ F×S+ is a set of decorated function symbols. We may write
ΣS andΣF to refer to S and F , respectively. IfΣ1 andΣ2 are signatures then the union
Σ1 ∪Σ2 = 〈ΣS

1 ∪ΣS
2 , Σ

F
1 ∪ΣF

2 〉 and intersection Σ1 ∩Σ2 = 〈ΣS
1 ∩ΣS

2 , Σ
F
1 ∩ΣF

2 〉
are signatures, too. Two signaturesΣ1 andΣ2 are disjoint ifΣF

1 ∩ΣF
2 = ∅, i. e., disjoint

signatures do not share decorated function symbols but may share sorts.



Union and intersection induce a lattice structure on signatures. We denote the in-
duced partial order by ⊇, where Σ2 ⊇ Σ1 (in words: Σ2 extends Σ1) if ΣS

2 ⊇ ΣS
1

and ΣF
2 ⊇ ΣF

1 . The constant expansion of Σ, denoted by Σ̂, is the greatest signature
extending Σ such that Σ̂S = ΣS and all function symbols in Σ̂F \ ΣF are constants,
i. e., Σ̂ provides infinitely many constants per sort.

Terms and formulae. Let Σ be a signature. Σ-terms are well-sorted terms constructed
from decorated function symbols in ΣF and decorated variables in X ×ΣS. A ground
Σ-term is a variable-freeΣ-term. IfΣ is clear from the context, we may drop the prefix
and write “term” instead of “Σ-term”. We may refer to terms of sort s ∈ ΣS as s-terms.

A Σ-atom is an equality1 t = t′, where t and t′ are Σ-terms of the same sort. A
Σ-literal is a Σ-atom t = t′ or its negation ¬(t = t′), often written as t 6= t′. If we
want to stress that the sort of left- and right-hand sides of a Σ-atom (resp.-literal) is
s, we may refer to the atom (resp. literal) as s-atom (resp. s-literal). Σ-formulae are
formed from Σ-atoms by the usual connectives (¬, ∧, ∨,⇒) and quantifiers (∀, ∃) of
first-order logic, inducing the usual notion of bound and free variables. A Σ-sentence
is a Σ-formula without free variables, and a Σ-theory is a set of Σ-sentences. Note that
a Σ-theory T is also a Σ′-theory, for all Σ′ extending Σ. A ground Σ-formula is a
quantifier-free Σ-sentence.

Algebras and satisfiability. Let Σ = 〈S, F 〉 be a signature. A Σ-algebra A is a pair
〈SA, FA〉where SA is a S-indexed family of carrier sets and FA is a F -indexed family
of functions on the carrier sets. More formally, SA = {sA|s ∈ ΣS} is a family of
non-empty and pairwise disjoint sets sA, and FA = {fAs0s1...sn

|fs0s1...sn ∈ F} is a
family of functions fAs0s1...sn

from sA1 ×· · ·× sAn to sA0 . We extend the interpretation of
function symbols in a Σ-algebra A homomorphically to ground Σ-terms t in the usual
way, denoting the resulting element of the algebra by tA. Note that for all Σ′ extending
Σ, a Σ′-algebra A can also be viewed as a Σ-algebra.

The truth of a Σ-sentence φ in a Σ-algebra A, denoted by A |= φ, is defined in the
usual way. A is a model of a Σ-theory T , also denoted by A |= T , if A |= φ for all
φ ∈ T . Given a Σ-algebraA, the theory T (A) is the greatest Σ-theory which hasA as
a model. Given a class∆ ofΣ-algebras, T (∆) =

⋂
A∈∆ T (A) is the greatestΣ-theory

which has all algebras A ∈ ∆ as models.
Let T be a Σ-theory. A Σ-algebra A is a T -model if A |= T . A Σ̂-sentence φ

is T -satisfiable if there is a T -model A which is a model of φ; note that A must be a
Σ̂-algebra. Two Σ̂-sentences φ and ψ are T -equisatisfiable if both are T -satisfiable or
neither is.

Given a subset S′ ⊆ ΣS of sorts, aΣ-theory T is stably infinite w. r. t. S′ if every T -
satisfiable ground Σ̂-formula φ has a T -model A such that sA is infinite for all s ∈ S′.
T is stably infinite if it is stably infinite w. r. t. the set of all sorts ΣS.

3 Theories

We introduce the signatures and theories used throughout this paper, see also Figure 2.
1 We consider equality the only predicate symbol of the logic. Other predicates can be encoded

as functions with a non-trivial codomain.



ΣE-theory TE of elements
ΣE arbitrary signature disjoint from all signatures below,
TE arbitrary stably infinite theory with decidable ground TE-satisfiability problem.
ΣINT-theory TINT of Presburger arithmetic
ΣS

INT = {INT}
ΣF

INT =
˘
0, 1 : INT,
+,−,min,max : INT× INT→ INT

¯
TINT = T (AINT) where AINT is the standard ΣINT-algebra.
ΣBAG-theory TBAG of multisets with cardinality
ΣS

BAG = ΣS
INT ∪ΣS

E ∪ {BAGs | s ∈ ΣS
E}

ΣF
BAG = ΣF

INT ∪
˘
|·| : BAGs→ INT,
count : BAGs × s→ INT,
JK : BAGs,

J·K(·) : s× INT→ BAGs,
∩,∪,] : BAGs × BAGs→ BAGs

˛̨
s ∈ ΣS

E

¯
TBAG = T (∆BAG) where ∆BAG is the class of standard ΣBAG-algebras.
ΣVEC-theory TVEC of vectors
ΣS

VEC = ΣS
INT ∪ΣS

E ∪ {VECs | s ∈ ΣS
E}

ΣF
VEC = ΣF

INT ∪
˘
fst, end : VECs→ INT,
·[·] : VECs × INT→ s,
const : s× INT× INT→VECs,
·[·:·] : VECs × INT× INT→VECs,
·{· ← ·} : VECs × INT× s→VECs

˛̨
s ∈ ΣS

E

¯
TVEC =

˘
∀u, v : fst(u) = fst(v) ∧ end(u) = end(v) ∧

(∀k : fst(u) ≤ k < end(u)⇒ u[k] = v[k])⇒ u = v,
∀x, i, j : fst(const(x, i, j)) = i ∧ end(const(x, i, j)) = j,
∀x, i, j, k : i ≤ k < j ⇒ const(x, i, j)[k] = x,
∀v, i, j : fst(v[i:j]) = max(i, fst(v)) ∧ end(v[i:j]) = min(j, end(v)),
∀v, i, j, k : fst(v[i:j]) ≤ k < end(v[i:j])⇒ v[i:j][k] = v[k],
∀v, i, x : fst(v{i← x}) = fst(v) ∧ end(v{i← x}) = end(v),
∀v, i, x : fst(v) ≤ i < end(v)⇒ v{i← x}[i] = x,
∀v, i, x, k : fst(v) ≤ k < end(v) ∧ i 6= k ⇒ v{i← x}[k] = v[k]

¯
ΣBAGOF-theory TBAGOF of bagof function on vectors
ΣS

BAGOF = ΣS
VEC ∪ΣS

BAG

ΣF
BAGOF = ΣF

VEC ∪ΣF
BAG ∪ {bagof : VECs→ BAGs | s ∈ ΣS

E}
TBAGOF =

˘
∀v : |bagof(v)| = max(end(v)− fst(v), 0),

∀v : end(v)− fst(v) = 1⇒ bagof(v) = Jv[fst(v)]K(1),
∀x, i, j : i ≤ j ⇒ bagof(const(x, i, j)) = JxK(j−i),
∀v, k : fst(v) ≤ k ≤ end(v)⇒

bagof(v) = bagof(v[fst(v):k]) ] bagof(v[k:end(v)])
¯

ΣMAP-theory TMAP of map function on vectors
ΣS

MAP = ΣS
VEC

ΣF
MAP = ΣF

VEC ∪ {f : s→ s′ | (f :s→ s′) ∈ ΣF
MAP ∧ s, s′ ∈ ΣS

E} ∪
{mapf : VECs→VECs′ | (f :s→ s′) ∈ ΣF

MAP ∧ s, s′ ∈ ΣS
E}

TMAP =
˘
∀v : fst(mapf (v)) = fst(v) ∧ end(mapf (v)) = end(v),

∀v, k : fst(v) ≤ k < end(v)⇒ mapf (v)[k] = f(v[k])
˛̨
mapf ∈ ΣF

MAP

¯
Fig. 2. Theories of vectors and bags; see Section 3 for details.



Elements. TE is a given theory of elements (of vectors and bags). Its signature ΣE is
arbitrary but must be disjoint from all other signatures introduced in this section. The
theory TE is arbitrary, too, but must be decidable and stably infinite so it can be coupled
with the theory of multisets, see Section 4.1.

Presburger arithmetic. ΣINT is the signature of Presburger arithmetic, with one sort,
two constants and four binary function symbols (for addition, subtraction, minimum
and maximum). We introduce the binary predicate symbols ≤ and < as abbreviations;
we may write s ≤ t instead of min(s, t) = s and s < t instead of s ≤ t ∧ s 6= t.

The theory TINT of Presburger arithmetic is defined as the set of allΣINT-sentences
which are true inAINT, the standard ΣINT-algebra which interprets the sort INT as the
integers and constants and function symbols by their usual meaning.

Multisets. The signature ΣBAG of multisets (with cardinality) extends the signature
of Presburger arithmetic with element sorts and multiset sorts BAGs, one per element
sort s. For each element sort, ΣBAG extends ΣINT with a constant JK for the empty
multiset, a singleton constructor J·K(·) (taking an element and its multiplicity), the usual
binary operations ∩, ∪, ] for intersection, union and sum, a destructor count(·, ·) for
counting the frequency of an element in a multiset, and a destructor |·| for measuring
the cardinality (i. e., the number of elements, taking into account their multiplicities)
of a multiset. We introduce the binary predicate symbol ⊆ as an abbreviation; we may
write s ⊆ t instead of s ∩ t = s.

Due to the cardinality function, the theory of multisets cannot be finitely axioma-
tised in our logic.2 Therefore, the theory TBAG of multisets is defined as the set of all
ΣBAG-sentences that are true of ∆BAG, the class of standard ΣBAG-algebras. A is a
standard ΣBAG-algebra if it interprets the sort INT as the integers, the sorts BAGs as
the finite multisets over the interpretations of the sorts s, and the constants and func-
tion symbols by their usual meanings. Note that the theory TINT is contained in TBAG;
stable infiniteness will be relevant in Section 4.1.

Lemma 1. TBAG is stably infinite.

Vectors. We represent vectors by finite arrays of elements indexed by consecutive in-
tegers. The signature ΣVEC of vectors extends the signature of Presburger arithmetic
with element sorts and vector sorts VECs, one per element sort s. For each element
sort, ΣVEC extends ΣINT with two destructors fst(·) and end(·) for accessing the first
and last (more precisely, the first beyond the last) index of a vector, a destructor ·[·] for
reading an element of a vector, a constructor const(·, ·, ·) for creating a vector filled
with a multiple occurrences of the same element, a constructor ·[·:·] for slicing the sub-
vector in between two indices out of a vector, and a constructor ·{· ← ·} for updating a
vector at an index.

The theory TVEC axiomatises vectors. The first axiom is extensionality, equating
all vectors that behave equally under the destructors. The remaining axioms define the
constructors (uniquely due to extensionality) in terms of the destructors. Note ΣVEC

provides no append(·, ·) because TVEC forces vector concatenation to be partial.
2 See [7] for an axiomatisation in a first-order logic extended with an infinite sum quantifier.



Given a signatureΣ extendingΣVEC, aΣ-algebraA is called vector complete if for
all element sorts s ∈ ΣS

E, all integers i, and all finite sequences x0, . . . , xk−1 ∈ sA there
is a vector v ∈ VECA

s such that fst(v)A = i and end(v)A = i+ k and v[i+ l]A = xl

for all integers l with 0 ≤ l < k. AΣ-theory T is vector complete if every T -satisfiable
ground Σ̂-formula has a vector complete model.

Bagof function. The signature ΣBAGOF extends the union of the signature ΣVEC and
ΣBAG with functions bagof(·) mapping vectors to the multisets of their elements. The
theory TBAGOF axiomatises these functions. The first axiom equates the length of the
argument vector with the cardinality of the resulting multiset. The next two axioms de-
fine bagof(·) for the special cases that the argument vector is of length one or constant.
The last axiom admits recursive computation of bagof(·) by splitting the argument into
two subvectors and summing the results.

Map function. The signatureΣMAP extendsΣVEC by adding a set F of unary functions
on elements (i. e., (f :s→ s′) ∈ F implies s, s′ ∈ ΣS

E) and a set Fmap of map functions
on vectors such that (mapf : VECs→VECs′) ∈ Fmap if and only if (f :s→ s′) ∈ F .
Note that Figure 2 specifies ΣMAP by a fixpoint equation which has infinitely many
solutions.3

The theory TMAP axiomatises the functions mapf , in terms of the vector destruc-
tors, thus uniquely defining these functions. Note that TMAP does not define the unary
functions on elements; these functions are intended to be free.

Base theory. We define the Σ-theory TBASE = TE ∪ TBAG ∪ TVEC ∪ TMAP as the
union of the above theories excluding TBAGOF, where Σ = ΣE ∪ ΣBAG ∪ ΣVEC ∪
ΣMAP∪ΣBAGOF is the union of the above signatures (includingΣBAGOF, i. e., TBASE

leaves the bagof functions uninterpreted). The following model-theoretic properties
will become relevant in Section 5.

Lemma 2. TBASE is vector complete and stably infinite.

4 Known Decision Procedures Applied to Bags and Vectors

This section employs known results to obtain a decision procedure for ground satisfia-
bility in the combination of the theories of elements, multisets and vectors (including
the theory of map functions). We will make repeated use of the following result on the
combination of arbitrary theories with free functions.

Proposition 3 (Sofronie-Stokkermans 2005 [9]). Let Σ′ ⊇ Σ be signatures and
let T be a Σ-theory. If T -satisfiability is decidable for ground Σ̂-formulae then T -
satisfiability is decidable for ground Σ̂′-formulae.

3 Extremal solutions are uninteresting. The least solution would yield ΣMAP = ΣVEC, and the
greatest solution would likely violate the requirement that ΣE and ΣMAP be disjoint.



The decision procedure behind Proposition 3 reduces a ground Σ̂′-formula in nega-
tion normal form4 (NNF) to a T -equisatisfiable ground Σ̂-formula in NNF; the reduc-
tion may cause a quadratic blowup.

4.1 Combining the Theories of Elements and Multisets

A decision procedure for the theory TBAG of multisets with cardinality is known [7].
We combine this decision procedure with an arbitrary decision procedure for the theory
TE of elements, using the Nelson-Oppen combination method [6, 11]. This is possible
because TE and TBAG are stably infinite theories (cf. Figure 2 and Lemma 1) over
disjoint signatures.

Proposition 4. Ground (TE ∪ TBAG)-satisfiability is decidable.

4.2 Deciding the Theory of Vectors (Including Map)

We use a decision procedure for the Array Property Fragment [3] to decide ground
satisfiability in the union of the theories of vectors and map functions. The procedure
reduces the satisfiability problem to ground satisfiability in the combination of the the-
ories of Presburger arithmetic, uninterpreted functions and an unspecified theory of
vector elements.

Proposition 5. Let T0 be a Σ0-theory where the signature Σ0 shares no non-constant
function symbols withΣVEC∪ΣMAP except for the function symbols inΣINT, formally
Σ0 ∩ (ΣVEC ∪ ΣMAP) ⊆ ˆΣINT. Let Σ1 = Σ0 ∪ ΣINT ∪ ΣVEC ∪ ΣMAP and T1 =
T0 ∪ TINT ∪ TVEC ∪ TMAP. If (T0 ∪ TINT)-satisfiability is decidable for ground Σ̂-
formulae, where Σ extends Σ0 ∪ ΣINT, then T1-satisfiability is decidable for ground
Σ̂1-formulae.

Proof. Let φ be a ground Σ̂1-formula (in NNF). Perform the following reductions.

1. Eliminate disequalities and updates: Normalise φ w. r. t. the rewrite rules NOTEQ
and UPDATE from Figure 3. NOTEQ expresses disequalities s 6= t using extension-
ality and Skolemisation. UPDATE is based on expressing equations v = u{i← x}
by splitting u and v into three subvectors each (a prefix up to index i, a middle
part of length 1 at index i and a suffix from index i + 1) and equating these ac-
cordingly (in particular, equating the middle part of v to a constant vector). The
resulting ground Σ̂1-formula φ′ is T1-equisatisfiable to φ but contains no vector
disequalities and updates.

2. Purify w. r. t. vector sorts: In a bottom up manner, rewrite φ′
[
t
]

to φ′
[
c
]
∧ c = t,

where c is a fresh constant and t a non-constant vector term. The result of normal-
ising φ′ w. r. t. the above rule is a T1-equisatisfiable Σ̂1-formula φ′′ such that

– for all terms of the form fst(u) or end(u) or u[i], u is a constant, and
– all vector atoms are of the form u = v or v = u[i:j] or v = const(x, i, j) or
v = mapf (u), where u and v are constants.

4 The procedure in [9] expects input in clause form; however, the reduction works just as well
for formulae in NNF.



[NOTEQ]
φ

ˆ
u 6= v

˜
φ

»
fst(u) 6= fst(v) ∨ end(u) 6= end(v) ∨
(fst(u) ≤ k < end(u) ∧ u[k] 6= v[k])

– if u, v vectors ∧ k fresh

[READ]
φ

ˆ
u[i]

˜
φ

ˆ
x

˜
∧ u[i:i+ 1] = const(x, i, i+ 1)

if x fresh

[UPDATE]
φ

ˆ
u{i← x}

˜
φ

ˆ
v

˜
∧ ψ(v, u, i, x)

if v fresh

where ψ(v, u, i, x) ≡

8>><>>:
`
fst(u) ≤ i < end(u) ∨ u = v

´
∧

`
i < fst(u) ∨ end(u) ≤ i ∨`

fst(v) = fst(u) ∧ end(v) = end(u) ∧
v[fst(u):i] = u[fst(u):i] ∧ v[i:i+ 1] = const(x, i, i+ 1) ∧
v[i+ 1:end(u)] = u[i+ 1:end(u)]

´´
[BAGOF]

φ
ˆ
bagof(u)

˜
φ

ˆ
b
˜
∧ b = bagof(u)

if b fresh

[SUBCONST]
φ

ˆ
v = u[k:l] ∧ u = const(x, i, j)

˜
φ

ˆ
v = const(x,max(k, i),min(l, j)) ∧ u = const(x, i, j)

˜
[MAPCONST]

φ
ˆ
v = mapf (u) ∧ u = const(x, i, j)

˜
φ

ˆ
v = const(f(x), i, j) ∧ u = const(x, i, j)

˜
Fig. 3. Vector transformations; see sections 4.2 and 5.1 for details.

3. Eliminate all subterms of the form fst(u) and end(u) in φ′′ by replacing them with
INT-constants fstu and endu, respectively, introducing two new INT-constants
fstu, endu per vector constant u. Then normalise φ′′ w. r. t. all rewrite rules in
Figure 4. This results in a T1-equisatisfiable Σ̂1-formula φ′′′, which falls into the
Array Property Fragment [3].

4. Use decision procedure for the Array Property Fragment outlined in [3]:
– Instantiate universal quantifiers in φ′′′.
– Replace all constants u of sort VECs by unary functions fu : INT→ s, and

replace all terms of the form u[i] by fu(i).
The resulting ground Σ̂-formula φ′′′′ is (T0 ∪ TINT)-satisfiable if and only if φ′′′ is
T1-satisfiable, where Σ extends Σ0 ∪ΣINT with the above unary functions fu and
with the unary functions f on element sorts from signature ΣMAP. ut

4.3 Deciding the Base Theory

Finally, we pull the results of the previous subsections together to obtain a decision pro-
cedure for TBASE, the union of all theories introduced in Section 3 excluding TBAGOF.
Recall that the signature Σ of TBASE includes ΣBAGOF, i. e., TBASE treats the bagof
functions as free.



[EQ]
φ

ˆ
u = v

˜
φ

ˆ
fstu = fstv ∧ endu = endv ∧ ∀k : fstu ≤ k < endu ⇒ u[k] = v[k]

˜
[SUB]

φ
ˆ
v = u[i:j]

˜
φ

»
fstv = max(i, fstu) ∧ endv = min(j, endu) ∧
∀k : fstv ≤ k < endv ⇒ v[k] = u[k]

–

[CONST]
φ

ˆ
v = const(x, i, j)

˜
φ

ˆ
fstv = i ∧ endv = j ∧ ∀k : fstv ≤ k < endv ⇒ v[k] = x

˜
[MAP]

φ
ˆ
v = mapf (u)

˜
φ

ˆ
fstv = fstu ∧ endv = endu ∧ ∀k : fstv ≤ k < endv ⇒ v[k] = f(u[k])

˜
Fig. 4. Translating to the Array Property Fragment; see Section 4.2 for details.

Proposition 6. Ground TBASE-satisfiability is decidable.

Proof. Let φ be Σ̂-formula (in NNF).

1. Reduce φ to a T -equisatisfiable ground Σ̂′-formula φ′ where Σ′ = ΣE ∪ΣBAG ∪
ΣVEC ∪ΣMAP, using the decision procedure for free functions (Proposition 3).

2. Reduce φ′ to a ground Σ̂′′-formula φ′′ using the decision procedure for vectors
(Proposition 5; the Σ0-theory T0 there is TE ∪ TBAG here). The resulting signature
Σ′′ extends ΣE ∪ΣBAG by free unary functions on element sorts (stemming from
signature ΣMAP) and free unary functions from INT to element sorts (arising from
encoding arrays as unary functions). The formula φ′′ is (TE ∪ TBAG)-satisfiable iff
φ′ is T -satisfiable.

3. Reduce φ′′ to a (TE ∪TBAG)-equisatisfiable ground Σ̂′′′-formula φ′′′ where Σ′′′ =
ΣE ∪ΣBAG, using the decision procedure for free functions (Proposition 3).

4. Check (TE∪TBAG)-satisfiability of φ′′′ using the combined decision procedure for
elements and multisets (Proposition 4). ut

5 A Decision Procedure for Bags, Vectors and Bagof Functions

Recall the Σ-theory TBASE, defined in Section 3 as the union of all theories excluding
TBAGOF, where Σ is the union of all signatures (including ΣBAGOF). For this section,
let T = TBASE ∪ TBAGOF be the Σ-theory extending TBASE with the axioms for the
bagof functions.

5.1 Decision Procedure

The decision procedure relies on reducing ground T -satisfiability to ground TBASE-
satisfiability by instantiating axioms of TBAGOF. The reduction is shown in Figure 5.
Termination is obvious. Soundness is established by the lemma below.



Input: Ground Σ̂-formula φ0 (in NNF).
Output: Ground Σ̂-formula φ6.
Algorithm:

1. Eliminate definable vector operators, purify and simplify:
(a) Construct φ1 by normalising φ0 w. r. t. the rule NOTEQ (Figure 3).
(b) Construct φ2 by normalising φ1 w. r. t. the rules READ, UPDATE and BAGOF

(Figure 3).
(c) Construct φ3 by purifying φ2 w. r. t. vector sorts: In a bottom up manner, rewrite

φ2

ˆ
t
˜

to φ2

ˆ
c
˜
∧ c = t, where c is a fresh constant and t a non-constant vector

term.
(d) Construct φ4 by converting φ3 into disjunctive normal form (DNF).
(e) Construct φ5 by normalising φ4 w. r. t. the rules SUBCONST and MAPCONST

(Figure 3).
2. Determine the sets of vector constants C, element terms E and index terms I:

C = {v | v vector constant occurring in φ5}
E = {x | ∃i, j : const(x, i, j) occurs in φ5} and
I = {fst(u), end(u) | u ∈ C} ∪
{i, j | ∃x : const(x, i, j) occurs in φ5 ∨ ∃u : u[i:j] occurs in φ5} .

3. Instantiate (variants of) the TBAGOF axioms with terms generated from C, E and I:

φ6 ≡ φ5 ∧
^

u∈C;i,j∈I

Axu,i,j
1 ∧

^
x∈E;i,j∈I

Axx,i,j
3 ∧

^
u∈C;i,j,k∈I

Axu,i,j,k
4

where Axu,i,j
1 ≡ fst(u) ≤ i ≤ j ≤ end(u)⇒ |bagof(u[i:j])| = j − i

Axx,i,j
3 ≡ i ≤ j ⇒ bagof(const(x, i, j)) = JxK(j−i)

Axu,i,j,k
4 ≡ fst(u) ≤ i ≤ k ≤ j ≤ end(u)⇒

bagof(u[i:j]) = bagof(u[i:k]) ] bagof(u[k:j])

Fig. 5. Reduction to base theory by instantiating TBAGOF axioms.

Lemma 7 (Soundness). If φ0 is T -satisfiable then φ6 is TBASE-satisfiable.

Proof. As φ0 and φ5 are T -equisatisfiable, it suffices to show that every T -model is
a model of the instances Axu,i,j

1 , Axx,i,j
3 and Axu,i,j,k

4 , for all u ∈ C, x ∈ E and
i, j, k ∈ I .

– Axu,i,j
1 follows from the first TBAGOF axiom (after instantiating v with u[i:j]) as in

TVEC, fst(u) ≤ i ≤ j ≤ end(u) implies max(end(u[i:j])− fst(u[i:j]), 0) = j− i.
– Axx,i,j

3 is an instance of the third TBAGOF axiom.
– Axu,i,j,k

4 follows from the fourth TBAGOF axiom (after instantiating v with u[i:j]
and k with k) because in TVEC, the antecedent fst(u) ≤ i ≤ k ≤ j ≤ end(u)
implies u[i:j][fst(u[i:j]):k] = u[i:k] and u[i:j][k:end(u[i:j])] = u[k:j]. ut

Before we show completeness of the reduction, we point out that step 1 converts the
input formula φ0 to a ground DNF formula φ5 such that

– bagof occurs only in atoms of the form b = bagof(u), where b and u are constants,



– all vector atoms are of the form u = v or v = u[i:j] or v = const(x, i, j) or
v = mapf (u), where u and v are constants,

– all other vector terms are of the form fst(u) or end(u), where u is a constant, and
– the arguments of mapf are non-constant, i. e., whenever mapf (u) occurs in a dis-

junct ψ then there are no terms x, i and j such that the atom u = const(x, i, j)
would logically follow from ψ in theory TBASE. Note that this last property is
achieved by conversion to DNF and propagation of constant vectors within each
disjunct (steps 1d and 1e in Figure 5).

5.2 Completeness in the Absence of Map Functions

We call the signatureΣMAP trivial ifΣMAP = ΣVEC, i. e., there are no unary functions
on elements and no map functions. By model-theoretic arguments, we prove complete-
ness of the reduction shown in Figure 5, given that ΣMAP is trivial.

Lemma 8 (Completeness without map). Assume ΣMAP trivial. If φ6 is TBASE-satis-
fiable then φ0 is T -satisfiable.

Proof. Assume a Σ̂-algebraA which is a TBASE-model of φ6; w. l. o. g. we assume that
A is vector complete (cf. Lemma 2). It suffices to construct a Σ̂-algebra A′ which is a
T -model of one disjunct ψ of φ5; we assume that A |= ψ.

Recall that C is the set of vector constants occurring in φ5. We choose A′ so that

1. A and A′ agree on the interpretations of all sorts, all constants except vector con-
stants occurring in φ5, and all function symbols except the bagof functions,

2. A′ interprets bagof : VECs→ BAGs as functions mapping vectors in VECA′

s to
the multisets of their elements in BAGA′

s ,
3. A′ interprets vector constants u occurring in φ5 such that A and A′ agree

(a) on the interpretations of the ground terms fst(u) and end(u), and
(b) on the interpretations of the ground term bagof(u).

We have to explain how the interpretations of vector constants can be chosen in such a
way that item (3b) holds, i. e., how to keep the interpretations of ground terms bagof(u)
invariant even though the interpretations of the bagof functions change.

Recall the set of index terms I defined in step 2 of the reduction (Figure 5). Let
〈i1, . . . , in〉 be an enumeration of I such that A orders their interpretations in ascend-
ing sequence iA1 ≤ · · · ≤ iAn . Items (1) to (3a) ensure that A and A′ agree on the
interpretations of index terms ij ∈ I , hence A′ orders their interpretation iA

′

j in the
same sequence.

Item (3b) is achieved by an inductive process. Let j < n be minimal such that there
is u ∈ C with fst(u)A ≤ iAj ≤ iAj+1 ≤ end(u)A and bagof(u[ij :ij+1])A differing from
the multiset of elements in u[ij :ij+1]A. Note that there can be no x ∈ E — recall the
set E of element terms occurring in φ5 — such that const(x, ij , ij+1)A = u[ij :ij+1]A.
For if there were such x ∈ E then the TBAGOF instance Axx,ij ,ij+1

3 (appearing as a
conjunct in φ6) would ensure that bagof(u[ij :ij+1])A equals the multiset of elements



in u[ij :ij+1]A. Now let Cu be the set of vector constants whose slice between ij and
ij+1 happens to equal u[ij :ij+1] in A, formally

Cu = {v ∈ C | A |= fst(v) ≤ ij ≤ ij+1 ≤ end(v) ∧ u[ij :ij+1] = v[ij :ij+1]} .

Let 〈x0, x1, . . . , xk−1〉 be an enumeration of the multiset bagof(u[ij :ij+1])A. Note
that the TBAGOF instance Axu,ij ,ij+1

1 constrains the size of the multiset so that k =
iAj+1 − iAj . As A is vector complete, we can choose the interpretations of all v ∈ Cu

such that for all l < k, vA
′

stores xl at index iA
′

j +l. This ensures thatA′ |= u[ij :ij+1] =
v[ij :ij+1]. The construction proceeds from there by induction on j.

After the construction is completed, one can show thatA andA′ do in fact agree on
the interpretation of bagof(u), for all u ∈ C. The proof is by induction on the length
end(u) − fst(u) of u and uses the TBAGOF instances Axu,i,j,k

4 , for all i, j, k ∈ I such
that A |= fst(u) ≤ i ≤ k ≤ j ≤ end(u).

Obviously,A′ is a model of TBAGOF (and thus of T ) as that is how the interpretation
of the bagof functions was chosen. To show that A′ |= ψ, it suffices to show that A′
satisfies every vector atom thatA satisfies (becauseA andA′ agree on the interpretation
of non-vector literals and all vector literals occurring in ψ are positive). In the case of
atoms of the form v = const(x, i, j) this is so because the construction does not change
the interpretation of v. In the case of atoms of the form u = v or v = u[i:j], the
construction alters the interpretations of corresponding slices of u and v uniformly. ut

The decidability of ground satisfiability in the theories of elements, multisets, vec-
tors (excluding map functions) and the bagof function follows from soundness and
completeness of the reduction (lemmas 7 and 8) and from decidability of the base the-
ory (Proposition 6).

Theorem 9. Assume ΣMAP trivial. Then ground T -satisfiability is decidable.

We remark that the conversion to DNF (step 1d in Figure 5) during the reduction is
not necessary if ΣMAP is trivial; NNF is all that’s required in that case.

5.3 Completeness in the Presence of Map Functions

To prove completeness of the reduction from Figure 5 when ΣMAP is not trivial, we
need syntactic restrictions on the occurrences of map functions in the input formula.

Given a set of element sorts S ⊆ ΣS
E, we say a term t is a S-term (resp. VECS-

term) if t is a s-term (resp. VECs-term) for some s ∈ S. A ground Σ̂-formula φ is
stratified if there is a partition {S1, . . . , Sm} of the set of element sorts ΣS

E such that

– for every subterm mapf (u) of φ there are strata Si and Si+1 such that u is a
VECSi-term and mapf (u) is a VECSi+1-term, and

– all arguments of bagof(·) in φ are uniformly VECSm -terms.

The verification condition VC from Figure 1 is an example of a stratified formula.
Given the strata S1 = {String} and S2 = {Resource}, it is easy to check that
mapMessageResource maps vectors of strings to vectors of resources, and that all argu-
ments of bagof(·) are vectors of resources. On the other hand, a formula containing a
function symbol mapf : VECs→VECs′ fails to be stratified if s = s′, for instance.



Lemma 10 (Completeness for stratified input). Assume φ0 stratified. If φ6 is TBASE-
satisfiable then φ0 is T -satisfiable.

Proof (Sketch). Let S1, . . . , Sm be the strata for φ0. As stratification is preserved by
step 1 of the reduction, φ5 is stratified w. r. t. the same strata. Recall the set C of
vector constants defined in step 2 of the reduction. Stratification induces a partition
{C1, . . . , Cm} of C such that each Ci contains the VECSi

-constants occurring in φ5.
We modify step 3 of the reduction slightly by generating instances of Axu,i,j

1 and
Axu,i,j,k

4 only for u ∈ Cm.
Now, assume a Σ̂-algebra A (which due to Lemma 2 can be assumed vector com-

plete and stably infinite5) which is a TBASE-model of φ6. The construction of a T -model
A′ of a disjunct ψ of φ5 is similar to the one in Lemma 8 except for the fact that nowA′
may not only change the interpretations of bagof(·) and of vector constants but also the
interpretations of function symbols from signature ΣMAP. The construction proceeds
in m phases, yielding a sequence 〈Am,Am−1, . . . ,A1〉 of Σ̂-algebras.

The first phase constructs a Σ̂-algebra Am fixing the interpretations of the bagof
functions and the vector constants in Cm; this construction is analogous to the proof of
Lemma 8. Changing the interpretation some constant v ∈ Cm may falsify some atom
of the form v = mapf (u). To rectify this, the second phase constructs a Σ̂-algebra
Am−1 fixing the interpretations of vector constants in Cm−1 (and possibly changing
the interpretations of functions in ΣMAP) in order to restore the truth of v = mapf (u).
This in turn may falsify some other map atom, whose truth is restored by constructing
Am−2, and so on.

We present the construction of Am−1 in more detail; recall that we assume that
A |= ψ, and that ψ is a conjunction of literals. Let 〈i1, i2, . . . , in〉 be the ascending enu-
meration of index terms as defined in the proof of Lemma 8. Let j < n be minimal such
that ψ contains some atom v = mapf (u) with Am 6|= v[ij :ij+1] = mapf (u[ij :ij+1]).
Because A and Am essentially differ in the interpretations of vector constants in Cm,
we conclude that v ∈ Cm, hence u ∈ Cm−1 due to stratification. In Am−1, we change
the interpretation of u (and of all u′ with Am |= u′[ij :ij+1] = u[ij :ij+1]) such that
the elements of u[ij :ij+1]Am−1 are fresh and pairwise distinct. Freshness means that
the elements of u[ij :ij+1]Am−1 occur neither in the A- nor in the Am-interpretation of
any element or vector constant. Because A and Am (which features the same carriers)
are stably infinite and vector complete, we can always find enough fresh elements and
create arbitrary vectors from them. Next, we change the interpretation of the free func-
tion f . Define fAm−1 such that fAm−1(uAm−1 [l]) = vAm−1 [l], for all integers l with
i
Am−1
j ≤ l < i

Am−1
j+1 . Due to freshness of the elements in u[ij :ij+1]Am−1 , the function

fAm−1 is well-defined. The construction proceeds by induction on j.
It is obvious that Am−1 |= v[ij :ij+1] = mapf (u[ij :ij+1]). What remains to be

shown is that the construction preserves the truth of other vector atoms occurring in ψ.
In the case of atoms of the form u′ = u or u′ = u[i:j], the argument is the same as in
the proof of Lemma 8: Both sides are altered uniformly. Finally, the case of atoms of the
form u = const(x, i, j) cannot arise because if it did then step 1e of the reduction would

5 By abuse of notation, we call a Σ-algebra A stably infinite if all its carriers are infinite.



have propagated the constant vector through mapf , replacing the atom v = mapf (u)
with v = const(f(x), i, j). ut

The decidability of satisfiability of stratified ground formulae in the theories of el-
ements, multisets, vectors, map functions and the bagof function follows; the proof is
similar to Theorem 9.

Theorem 11. Ground T -satisfiability is decidable for stratified ground Σ̂-formulae.

Relation to local theory extensions. The way the reduction in Figure 5 instantiates
universal quantifiers with selected ground terms is reminiscent of local theory exten-
sions [5], and one may wonder whether the theory T can be viewed as a local extension
of the theory TBASE. However, our model construction does not fit entirely into the
framework of local theory extensions because not only does it extend partial extension
functions (like the bagof functions) to total ones but also changes the interpretations of
base constants and free base functions. It remains to be seen whether the framework of
local theory extensions can be suitably generalised to encompass our construction.
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